Application of online agglomerative hierarchical clustering on real dMRI

A. Demir, M. Ozkan
{"title":"Application of online agglomerative hierarchical clustering on real dMRI","authors":"A. Demir, M. Ozkan","doi":"10.1109/BIYOMUT.2014.7026372","DOIUrl":null,"url":null,"abstract":"Magnetic resonance imaging provides diffusion weighted images (DWI), which non-invasively reconstruct the brain white matter pathways through fiber tractography. Fiber clustering algorithms are used to identify anatomically meaningful fiber bundles. Most of the clustering schemes require a (dis)similarity matrix which contains pairwise fiber distances. Computation of the pairwise fiber distances has a quadratic complexity. Online clustering schemes do not require a computation of full pairwise fiber distances, hence the overall clustering computation time is reduced. In this experimental study, we proposed to use an online agglomerative hierarchical clustering algorithm to extract white matter fiber bundles from the whole brain fibers filtered by a spherical region of interest (ROI). This method requires an initialization of the cluster model using a relatively small set of fibers. After the initialization, cluster (re)assignment is performed using the cluster model by updating the model in certain conditions. The experiments are conducted on five different real DWI, for each a spherical ROI is located in different anatomical regions for filtering the whole brain fibers.","PeriodicalId":428610,"journal":{"name":"2014 18th National Biomedical Engineering Meeting","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 18th National Biomedical Engineering Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIYOMUT.2014.7026372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic resonance imaging provides diffusion weighted images (DWI), which non-invasively reconstruct the brain white matter pathways through fiber tractography. Fiber clustering algorithms are used to identify anatomically meaningful fiber bundles. Most of the clustering schemes require a (dis)similarity matrix which contains pairwise fiber distances. Computation of the pairwise fiber distances has a quadratic complexity. Online clustering schemes do not require a computation of full pairwise fiber distances, hence the overall clustering computation time is reduced. In this experimental study, we proposed to use an online agglomerative hierarchical clustering algorithm to extract white matter fiber bundles from the whole brain fibers filtered by a spherical region of interest (ROI). This method requires an initialization of the cluster model using a relatively small set of fibers. After the initialization, cluster (re)assignment is performed using the cluster model by updating the model in certain conditions. The experiments are conducted on five different real DWI, for each a spherical ROI is located in different anatomical regions for filtering the whole brain fibers.
在线聚类层次聚类在真实dMRI中的应用
磁共振成像提供弥散加权图像(DWI),通过纤维束造影无创重建脑白质通路。纤维聚类算法用于识别具有解剖学意义的纤维束。大多数聚类方案需要一个包含成对光纤距离的(非)相似矩阵。光纤对向距离的计算具有二次复杂度。在线聚类方案不需要计算完整的光纤对向距离,因此减少了总体聚类计算时间。在本实验研究中,我们提出了一种在线聚类分层聚类算法,通过球形感兴趣区域(ROI)过滤,从全脑纤维中提取白质纤维束。这种方法需要使用相对较小的一组纤维初始化集群模型。初始化后,通过在一定条件下更新集群模型,使用集群模型执行集群(重新)分配。实验在五种不同的真实DWI上进行,每种DWI在不同的解剖区域都有一个球形ROI,用于过滤全脑纤维。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信