Face Image Scanning for Differentiation of Child/Adult images using a CNN-Based Model

Mirza Jamal Ahmed, Nurul Aza Abdullah
{"title":"Face Image Scanning for Differentiation of Child/Adult images using a CNN-Based Model","authors":"Mirza Jamal Ahmed, Nurul Aza Abdullah","doi":"10.1109/CSDE53843.2021.9718484","DOIUrl":null,"url":null,"abstract":"Differentiating child and adult images is a crucial requirement for many applications. This paper proposes an approach using a Convolutional Neural Network (CNN) model to distinguish between children's images from adults. In contrast to predetermined face landmarks, the suggested approach learns complex face features and achieves 85% accuracy regardless of variation in age, gender, race, or ethnicity. The approach could be used to leverage the performance of digital image forensic, security control and, surveillance monitoring, and robotics.","PeriodicalId":166950,"journal":{"name":"2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSDE53843.2021.9718484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Differentiating child and adult images is a crucial requirement for many applications. This paper proposes an approach using a Convolutional Neural Network (CNN) model to distinguish between children's images from adults. In contrast to predetermined face landmarks, the suggested approach learns complex face features and achieves 85% accuracy regardless of variation in age, gender, race, or ethnicity. The approach could be used to leverage the performance of digital image forensic, security control and, surveillance monitoring, and robotics.
基于cnn的人脸图像扫描儿童/成人图像区分模型
区分儿童和成人图像是许多应用程序的关键要求。本文提出了一种使用卷积神经网络(CNN)模型来区分儿童和成人图像的方法。与预先确定的面部标志相比,所建议的方法学习复杂的面部特征,无论年龄、性别、种族或民族的变化,准确率都达到85%。该方法可用于利用数字图像取证、安全控制、监视监控和机器人技术的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信