Collaborative Filtering Algorithm Based on the Similarity of User Ratings and Item Attributes

Aili Liu, Baoan Li
{"title":"Collaborative Filtering Algorithm Based on the Similarity of User Ratings and Item Attributes","authors":"Aili Liu, Baoan Li","doi":"10.2991/ICMII-15.2015.78","DOIUrl":null,"url":null,"abstract":"Collaborative filtering recommendation algorithm is key technologies of personalized re commendation system, as the serious data sparsity of rated items, the traditional collaborative filtering algorithms only depending on users data cannot achieve satisfactory recommended quality, an improved collaborative filtering recommendation algorithm based on the similarity of user ratings and item attributes is proposed. The experimental results based on Movie Lens dataset show that the improved hybrid collaborative filtering recommendation algorithm obtains the better recommendation accuracy than traditional similarity calculation method.","PeriodicalId":270248,"journal":{"name":"International Congress of Mathematicans","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Congress of Mathematicans","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/ICMII-15.2015.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Collaborative filtering recommendation algorithm is key technologies of personalized re commendation system, as the serious data sparsity of rated items, the traditional collaborative filtering algorithms only depending on users data cannot achieve satisfactory recommended quality, an improved collaborative filtering recommendation algorithm based on the similarity of user ratings and item attributes is proposed. The experimental results based on Movie Lens dataset show that the improved hybrid collaborative filtering recommendation algorithm obtains the better recommendation accuracy than traditional similarity calculation method.
基于用户评分和项目属性相似度的协同过滤算法
协同过滤推荐算法是个性化推荐系统的关键技术,针对评价项目数据稀疏性严重的问题,传统的仅依赖用户数据的协同过滤算法无法获得满意的推荐质量,提出了一种基于用户评价与项目属性相似度的改进协同过滤推荐算法。基于Movie Lens数据集的实验结果表明,改进的混合协同过滤推荐算法比传统的相似度计算方法获得了更好的推荐精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信