Thomas Garbay, Orlando Chuquimia, A. Pinna, H. Sahbi, X. Dray, B. Granado
{"title":"Distilling the knowledge in CNN for WCE screening tool","authors":"Thomas Garbay, Orlando Chuquimia, A. Pinna, H. Sahbi, X. Dray, B. Granado","doi":"10.1109/DASIP48288.2019.9049201","DOIUrl":null,"url":null,"abstract":"A way to improve the early detection of colorectal cancer is screening. Polyps are a marker of colorectal cancer and the best modality to detect them is the image. In 2003 Wireless Capsule Endoscopy was introduced and opened a way to integrate automatic image processing to realize a screening tool. Moreover, the capacity to detect polyp with Convolutional Neural Network was shown in many scientific studies, but one issue is the integration of these networks. In this article, we present our works to integrate CNN or image processing based on a CNN inside a WCE to realize a powerful screening tool. We apply the knowledge distillation method. We prove that knowledge distillation is efficient from VGG16 to Squeezenet in polyp detection context","PeriodicalId":120855,"journal":{"name":"2019 Conference on Design and Architectures for Signal and Image Processing (DASIP)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Conference on Design and Architectures for Signal and Image Processing (DASIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASIP48288.2019.9049201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
A way to improve the early detection of colorectal cancer is screening. Polyps are a marker of colorectal cancer and the best modality to detect them is the image. In 2003 Wireless Capsule Endoscopy was introduced and opened a way to integrate automatic image processing to realize a screening tool. Moreover, the capacity to detect polyp with Convolutional Neural Network was shown in many scientific studies, but one issue is the integration of these networks. In this article, we present our works to integrate CNN or image processing based on a CNN inside a WCE to realize a powerful screening tool. We apply the knowledge distillation method. We prove that knowledge distillation is efficient from VGG16 to Squeezenet in polyp detection context