Wireless Link Quality Prediction in IoT Networks

Miguel Landry Foko Sindjoung, P. Minet
{"title":"Wireless Link Quality Prediction in IoT Networks","authors":"Miguel Landry Foko Sindjoung, P. Minet","doi":"10.23919/PEMWN47208.2019.8986920","DOIUrl":null,"url":null,"abstract":"The knowledge of link quality in IoT networks allows a more accurate selection of wireless links to build the routes used for data gathering. The number of retransmissions is decreased, leading to a shorter end-to-end latency, a better end-to-end reliability and a larger network lifetime. We propose to predict link quality by means of machine learning techniques applied on two metrics: RSSI and PDR. The accuracy got by Logistic Regression, Linear Support Vector Machine, Support Vector Machine and Random Forest classifier is computed on the traces of a real IoT network deployed in Grenoble.","PeriodicalId":440043,"journal":{"name":"2019 8th International Conference on Performance Evaluation and Modeling in Wired and Wireless Networks (PEMWN)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th International Conference on Performance Evaluation and Modeling in Wired and Wireless Networks (PEMWN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/PEMWN47208.2019.8986920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The knowledge of link quality in IoT networks allows a more accurate selection of wireless links to build the routes used for data gathering. The number of retransmissions is decreased, leading to a shorter end-to-end latency, a better end-to-end reliability and a larger network lifetime. We propose to predict link quality by means of machine learning techniques applied on two metrics: RSSI and PDR. The accuracy got by Logistic Regression, Linear Support Vector Machine, Support Vector Machine and Random Forest classifier is computed on the traces of a real IoT network deployed in Grenoble.
物联网网络中的无线链路质量预测
物联网网络中链路质量的知识允许更准确地选择无线链路,以构建用于数据收集的路由。减少了重传的次数,从而缩短了端到端延迟、提高了端到端可靠性和延长了网络生命周期。我们建议通过应用于两个指标的机器学习技术来预测链接质量:RSSI和PDR。通过逻辑回归、线性支持向量机、支持向量机和随机森林分类器得到的精度在格勒诺布尔部署的真实物联网网络的轨迹上进行计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信