An intelligent train operation algorithm via gradient descent method and driver's experience

Jiateng Yin, Dewang Chen
{"title":"An intelligent train operation algorithm via gradient descent method and driver's experience","authors":"Jiateng Yin, Dewang Chen","doi":"10.1109/ICIRT.2013.6696267","DOIUrl":null,"url":null,"abstract":"Most existing train control methods aim to track the target velocity curve offline, which may cause the frequent shit of the controller output, reduced comfort of passengers and increased energy consumption etc. Different from the previous control strategies, this paper presents a new algorithm without using the model information and the offline target velocity curve. The new algorithm is a data-driven intelligent train operation (ITO) algorithm which uses driver's experience to obtain the control strategy and employs input-output data to online optimize by gradient descent method. The proposed algorithm is tested in a Matlab/Simulink simulation model using the actual data from Beijing subway Yizhuang line. Compared with Proportion-integral-derivative(PID), this algorithm is better with less energy consumption, higher comfort, and parking precision and it meets the dynamic adjustment of running time. Moreover, the results of the ITO algorithm look like driver's situation both on trajectory and operation mode conversion.","PeriodicalId":163655,"journal":{"name":"2013 IEEE International Conference on Intelligent Rail Transportation Proceedings","volume":"147 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Intelligent Rail Transportation Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIRT.2013.6696267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Most existing train control methods aim to track the target velocity curve offline, which may cause the frequent shit of the controller output, reduced comfort of passengers and increased energy consumption etc. Different from the previous control strategies, this paper presents a new algorithm without using the model information and the offline target velocity curve. The new algorithm is a data-driven intelligent train operation (ITO) algorithm which uses driver's experience to obtain the control strategy and employs input-output data to online optimize by gradient descent method. The proposed algorithm is tested in a Matlab/Simulink simulation model using the actual data from Beijing subway Yizhuang line. Compared with Proportion-integral-derivative(PID), this algorithm is better with less energy consumption, higher comfort, and parking precision and it meets the dynamic adjustment of running time. Moreover, the results of the ITO algorithm look like driver's situation both on trajectory and operation mode conversion.
基于梯度下降法和驾驶员经验的智能列车运行算法
现有的列车控制方法大多以离线跟踪目标速度曲线为目标,这可能会导致控制器输出频繁拉屎,降低乘客舒适度,增加能耗等问题。与以往的控制策略不同,本文提出了一种不使用模型信息和离线目标速度曲线的新算法。该算法是一种数据驱动的列车智能运行(ITO)算法,利用驾驶员经验获取控制策略,利用输入输出数据采用梯度下降法进行在线优化。利用北京地铁亦庄线的实际数据,在Matlab/Simulink仿真模型中对该算法进行了验证。与比例-积分-导数(PID)算法相比,该算法具有能耗小、舒适性高、停车精度高等优点,并能满足运行时间的动态调节。此外,ITO算法的结果在轨迹和操作模式转换上都接近驾驶员的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信