A level set method for retina image vessel segmentation based on the local cluster value via bias correction

H. Gong, Yan Li, Gaoqiang Liu, Weilin Wu, Guannan Chen
{"title":"A level set method for retina image vessel segmentation based on the local cluster value via bias correction","authors":"H. Gong, Yan Li, Gaoqiang Liu, Weilin Wu, Guannan Chen","doi":"10.1109/CISP.2015.7407915","DOIUrl":null,"url":null,"abstract":"Segmentation of the retina vessels plays an important role in detecting earlier diseases, i.e. diabetic and hypertension. These diseases may cause the shape change of the vasculature. Due to the inhomogeneous of the retina image, it's very difficult to use region static information to get the result. We use a new level set method based on local region cluster information which proves to be well performed the inhomogeneous of the retina image. Experiment shows that our method is more robust to the initial contour C. In the experiment, our method can get a desirable segmentation result in the segmentation of retina images.","PeriodicalId":167631,"journal":{"name":"2015 8th International Congress on Image and Signal Processing (CISP)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 8th International Congress on Image and Signal Processing (CISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP.2015.7407915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Segmentation of the retina vessels plays an important role in detecting earlier diseases, i.e. diabetic and hypertension. These diseases may cause the shape change of the vasculature. Due to the inhomogeneous of the retina image, it's very difficult to use region static information to get the result. We use a new level set method based on local region cluster information which proves to be well performed the inhomogeneous of the retina image. Experiment shows that our method is more robust to the initial contour C. In the experiment, our method can get a desirable segmentation result in the segmentation of retina images.
基于局部聚类值校正的视网膜图像血管分割水平集方法
视网膜血管的分割在早期疾病的检测中起着重要的作用,如糖尿病和高血压。这些疾病可引起血管的形状改变。由于视网膜图像的非均匀性,使用区域静态信息获取结果非常困难。采用一种新的基于局部区域聚类信息的水平集方法,较好地处理了视网膜图像的非均匀性。实验表明,我们的方法对初始轮廓c具有较强的鲁棒性。实验表明,我们的方法在视网膜图像的分割中可以得到理想的分割结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信