{"title":"Application of a minimum probability of error classifier with Linear Time-Varying pre-filters for buried target recognition","authors":"B. Hamschin, P. Loughlin","doi":"10.1109/OCEANS.2010.5664353","DOIUrl":null,"url":null,"abstract":"In this paper we overview the theory of Linear Time-Varying (LTV) filters and investigate via simulation their application to buried target classification in challenging nonstationary environments; in particular, environments where noise is not only nonstationary but exhibits statistical properties that are not known a priori. We then propose an extension of the Minimum Probability of Error (MPE) classifier (a/k/a Minimum Distance Receiver) by pre-processing the received data through a bank of LTV filters before the calculation of each test statistic via the MPE classifier. The proposed augmented MPE classifier is shown to outperform the conventional MPE classifier via simulation.","PeriodicalId":363534,"journal":{"name":"OCEANS 2010 MTS/IEEE SEATTLE","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2010 MTS/IEEE SEATTLE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS.2010.5664353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper we overview the theory of Linear Time-Varying (LTV) filters and investigate via simulation their application to buried target classification in challenging nonstationary environments; in particular, environments where noise is not only nonstationary but exhibits statistical properties that are not known a priori. We then propose an extension of the Minimum Probability of Error (MPE) classifier (a/k/a Minimum Distance Receiver) by pre-processing the received data through a bank of LTV filters before the calculation of each test statistic via the MPE classifier. The proposed augmented MPE classifier is shown to outperform the conventional MPE classifier via simulation.