The SVM based Uyghur Text Classification and its Performance Analysis

Palidan Tuerxun, Dingyi Fang, Hamdulla Askar
{"title":"The SVM based Uyghur Text Classification and its Performance Analysis","authors":"Palidan Tuerxun, Dingyi Fang, Hamdulla Askar","doi":"10.14257/IJMUE.2015.10.4.27","DOIUrl":null,"url":null,"abstract":"This paper mainly explores the use of Support Vector Machines (SVMs) for Uyghur text classification, presents the process of text categorization: Text preprocessing, feature dimensionality reduction, representation method and classification of text features etc., discusses the SVMs classification algorithm in the application of Uyghur text classification. Focus on the construction of text categorization model and its procedures. Experiment results show that training by using the selected training data with the guarantee of the performance of the classifier, has higher efficiency than other nearest neighbor classifier (KNN), Naive Bayes (NB) classifier with increased accuracy.","PeriodicalId":162936,"journal":{"name":"International Conference on Multimedia and Ubiquitous Engineering","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Multimedia and Ubiquitous Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14257/IJMUE.2015.10.4.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper mainly explores the use of Support Vector Machines (SVMs) for Uyghur text classification, presents the process of text categorization: Text preprocessing, feature dimensionality reduction, representation method and classification of text features etc., discusses the SVMs classification algorithm in the application of Uyghur text classification. Focus on the construction of text categorization model and its procedures. Experiment results show that training by using the selected training data with the guarantee of the performance of the classifier, has higher efficiency than other nearest neighbor classifier (KNN), Naive Bayes (NB) classifier with increased accuracy.
基于支持向量机的维吾尔语文本分类及其性能分析
本文主要探讨了支持向量机在维吾尔语文本分类中的应用,介绍了文本分类的过程:文本预处理、特征降维、文本特征的表示方法和分类等,讨论了支持向量机分类算法在维吾尔语文本分类中的应用。重点介绍了文本分类模型的构建及其过程。实验结果表明,利用所选训练数据进行训练,在保证分类器性能的前提下,具有比其他最近邻分类器(KNN)更高的效率,提高了朴素贝叶斯(NB)分类器的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信