Finger Motion Classification Using Surface-Electromyogram Signals

K. Ishikawa, M. Toda, S. Sakurazawa, J. Akita, K. Kondo, Yuichi Nakamura
{"title":"Finger Motion Classification Using Surface-Electromyogram Signals","authors":"K. Ishikawa, M. Toda, S. Sakurazawa, J. Akita, K. Kondo, Yuichi Nakamura","doi":"10.1109/ICIS.2010.131","DOIUrl":null,"url":null,"abstract":"The finger movement has the information about force, speed to bend and the combination of fingers. If these information is estimated, the many degrees of freedom interface can apply it. In this study, we aimed for the many degrees of freedom finger movement classification. We tried each fingers classification and the estimate of the flexural finger force using surface-electromyogram signals. In the technique, amount of characteristic are a cepstral coefficient of EMG signals and an integral calculus EMG signals. A support vector machine performs learning and classtification. Therefore, I propose the classification technique and inspected a classification each finger and the combination of fingers by offline data handling using surface EMG signals.","PeriodicalId":338038,"journal":{"name":"2010 IEEE/ACIS 9th International Conference on Computer and Information Science","volume":"411 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/ACIS 9th International Conference on Computer and Information Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIS.2010.131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The finger movement has the information about force, speed to bend and the combination of fingers. If these information is estimated, the many degrees of freedom interface can apply it. In this study, we aimed for the many degrees of freedom finger movement classification. We tried each fingers classification and the estimate of the flexural finger force using surface-electromyogram signals. In the technique, amount of characteristic are a cepstral coefficient of EMG signals and an integral calculus EMG signals. A support vector machine performs learning and classtification. Therefore, I propose the classification technique and inspected a classification each finger and the combination of fingers by offline data handling using surface EMG signals.
基于表面肌电信号的手指运动分类
手指的运动包含有关力、弯曲速度和手指组合的信息。如果这些信息是估计的,那么多自由度的界面可以应用它。在本研究中,我们的目标是对多自由度手指运动进行分类。我们尝试每个手指分类和估计弯曲手指的力量使用表面肌电图信号。在该技术中,特征量是肌电信号的倒谱系数和肌电信号的积分。支持向量机执行学习和分类。因此,我提出了分类技术,并通过离线数据处理,利用表面肌电信号对每个手指和手指组合进行了分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信