Video Affective Content Analysis based on multimodal features using a novel hybrid SVM-RBM classifier

Ashwin T S, Sai Saran, G. R. M. Reddy
{"title":"Video Affective Content Analysis based on multimodal features using a novel hybrid SVM-RBM classifier","authors":"Ashwin T S, Sai Saran, G. R. M. Reddy","doi":"10.1109/UPCON.2016.7894690","DOIUrl":null,"url":null,"abstract":"Video Affective Content Analysis is an active research area in computer vision. Live Streaming video has become one of the modes of communication in the recent decade. Hence video affect content analysis plays a vital role. Existing works on video affective content analysis are more focused on predicting the current state of the users using either of the visual or the acoustic features. In this paper, we propose a novel hybrid SVM-RBM classifier which recognizes the emotion for both live streaming video and stored video data using audio-visual features; thus recognizes the users' mood based on categorical emotion descriptors. The proposed method is experimented for human emotions recognition for live streaming data using the devices such as Microsoft Kinect and Web Cam. Further we tested and validated using standard datasets like HUMANE and SAVEE. Classification of emotion is performed for both acoustic and visual data using Restricted Boltzmann Machine (RBM) and Support Vector Machine (SVM). It is observed that SVM-RBM classifier outperforms RBM and SVM for annotated datasets.","PeriodicalId":151809,"journal":{"name":"2016 IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics Engineering (UPCON)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics Engineering (UPCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPCON.2016.7894690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Video Affective Content Analysis is an active research area in computer vision. Live Streaming video has become one of the modes of communication in the recent decade. Hence video affect content analysis plays a vital role. Existing works on video affective content analysis are more focused on predicting the current state of the users using either of the visual or the acoustic features. In this paper, we propose a novel hybrid SVM-RBM classifier which recognizes the emotion for both live streaming video and stored video data using audio-visual features; thus recognizes the users' mood based on categorical emotion descriptors. The proposed method is experimented for human emotions recognition for live streaming data using the devices such as Microsoft Kinect and Web Cam. Further we tested and validated using standard datasets like HUMANE and SAVEE. Classification of emotion is performed for both acoustic and visual data using Restricted Boltzmann Machine (RBM) and Support Vector Machine (SVM). It is observed that SVM-RBM classifier outperforms RBM and SVM for annotated datasets.
基于多模态特征的视频情感内容分析与SVM-RBM混合分类器
视频情感内容分析是计算机视觉领域的一个活跃研究领域。近十年来,视频直播已经成为一种交流方式。因此视频影响内容分析起着至关重要的作用。现有的视频情感内容分析工作更侧重于使用视觉或听觉特征来预测用户的当前状态。在本文中,我们提出了一种新的混合SVM-RBM分类器,该分类器利用视听特征对直播视频和存储视频数据进行情感识别;从而基于分类情感描述符识别用户的情绪。利用微软Kinect和网络摄像头等设备对实时流媒体数据进行了人类情绪识别实验。我们进一步使用标准数据集(如HUMANE和SAVEE)进行测试和验证。使用受限玻尔兹曼机(RBM)和支持向量机(SVM)对声学和视觉数据进行情感分类。观察到SVM-RBM分类器在标注数据集上优于RBM和SVM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信