Distance coordinates with respect to a triangle of reference

K. Goldberg
{"title":"Distance coordinates with respect to a triangle of reference","authors":"K. Goldberg","doi":"10.6028/JRES.076B.010","DOIUrl":null,"url":null,"abstract":"With respect to a triangle of reference A IA 2A3 • each point P in the plane of the triangle . has unique area coordinates: P = (b l • b, . b3 ) with 6 1 + 'b2 + b3 = 1. Distance coordinates are introduced such that P= (d l • d 2 • d3 ], with d,. the di stance from P to A k • It is shown that there is an' explicit function [(XI. X,. X3) such thatf(d;. d~. d5) = 0 is necessary and sufficient for P = [d l • d2 • d3 ], each d k nonnegative. The partial derivatives fdxI. X2. X3) = a[(x l . X2. X 3 ) laxk are such that b,. = fdd;. d;' d~) for each k. Other results relating the bk and the dj,' are given. The use of f(x\" x •• X3) in solving geometric problems is shown.","PeriodicalId":166823,"journal":{"name":"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1972-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/JRES.076B.010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

With respect to a triangle of reference A IA 2A3 • each point P in the plane of the triangle . has unique area coordinates: P = (b l • b, . b3 ) with 6 1 + 'b2 + b3 = 1. Distance coordinates are introduced such that P= (d l • d 2 • d3 ], with d,. the di stance from P to A k • It is shown that there is an' explicit function [(XI. X,. X3) such thatf(d;. d~. d5) = 0 is necessary and sufficient for P = [d l • d2 • d3 ], each d k nonnegative. The partial derivatives fdxI. X2. X3) = a[(x l . X2. X 3 ) laxk are such that b,. = fdd;. d;' d~) for each k. Other results relating the bk and the dj,' are given. The use of f(x" x •• X3) in solving geometric problems is shown.
相对于参考三角形的距离坐标
对于参考三角形a ia2a3•三角形平面上的每个点P。有唯一的面积坐标:P = (b l•b,)。B3) 6 + b2 + B3 = 1。引入距离坐标使得P= (d1•d2•d3),其中d,。X)。X3)使得f(d;。d ~。d5) = 0是P = [d1•d2•d3]的充分必要条件,各d1非负。偏导数fdxI。X2。X3 = a[(x l)]X2。X X X是这样的,b,。= fdd;。d;' d~)。给出了与bk和dj相关的其他结果。展示了f(x”x••X3)在求解几何问题中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信