Error Rate Reduction in DNA Self-Assembly by Non-Constant Monomer Concentrations and Profiling

B. Jang, Y. Kim, F. Lombardi
{"title":"Error Rate Reduction in DNA Self-Assembly by Non-Constant Monomer Concentrations and Profiling","authors":"B. Jang, Y. Kim, F. Lombardi","doi":"10.1109/DATE.2007.364398","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel technique based on profiling the monomers for reducing the error rate in DNA self-assembly. This technique utilizes the average concentration of the monomers (tiles) for a specific pattern as found by profiling its growth. The validity of profiling and the large difference in the concentrations of the monomers are shown to be applicable to different tile sets. To evaluate the error rate new Markov based models are proposed to account for the different types of bonding (i.e. single, double and triple) in the monomers as modification to the commonly assumed kinetic trap model. A significant error rates reduction is accomplished compared to a scheme with constant concentration as commonly utilized under the kinetic trap model. Simulation results are provided","PeriodicalId":298961,"journal":{"name":"2007 Design, Automation & Test in Europe Conference & Exhibition","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Design, Automation & Test in Europe Conference & Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATE.2007.364398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper proposes a novel technique based on profiling the monomers for reducing the error rate in DNA self-assembly. This technique utilizes the average concentration of the monomers (tiles) for a specific pattern as found by profiling its growth. The validity of profiling and the large difference in the concentrations of the monomers are shown to be applicable to different tile sets. To evaluate the error rate new Markov based models are proposed to account for the different types of bonding (i.e. single, double and triple) in the monomers as modification to the commonly assumed kinetic trap model. A significant error rates reduction is accomplished compared to a scheme with constant concentration as commonly utilized under the kinetic trap model. Simulation results are provided
非恒定单体浓度和谱分析降低DNA自组装错误率
本文提出了一种基于单体分析的降低DNA自组装错误率的新技术。该技术利用单体(瓦片)的平均浓度,通过分析其生长发现特定的图案。分析的有效性和单体浓度的巨大差异被证明适用于不同的瓷砖组。为了评估错误率,提出了新的基于马尔可夫的模型来考虑单体中不同类型的键(即单键、双键和三键),作为对通常假设的动力学陷阱模型的修正。与通常在动力学陷阱模型下使用的恒定浓度方案相比,实现了显着的错误率降低。给出了仿真结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信