DOA Estimation in MIMO Radars via Deep Learning

Kerem Maden, I. Erer
{"title":"DOA Estimation in MIMO Radars via Deep Learning","authors":"Kerem Maden, I. Erer","doi":"10.1109/TELFOR56187.2022.9983686","DOIUrl":null,"url":null,"abstract":"The Direction of Arrival (DOA) estimation is an active research area in array signal processing. Conventional DOA estimation methods require high computational complexity for the multiple-input and multiple-output (MIMO) radars which require the use virtual data vector. In addition, while most conventional methods perform well in high signal-to-noise ratio (SNR) environments, the results in low SNR conditions are not satisfactory. To address these problems, this paper introduces an architecture composed of denoising convolutional autoencoders (DCAE) and convolutional neural networks (CNN) named as DCAE-CNN architecture. The DCAE is used to restore the data prior to DOA estimation, and CNN is employed to estimate the angle of arrival by mapping the restored data to the corresponding angles. Compared to the conventional MUSIC algorithm, experimental results of the proposed DCAE-CNN scheme demonstrate more satisfactory performance in terms of accuracy in low SNR circumstances and reduce the computation time considerably which makes it’s use possible for in real-time applications.","PeriodicalId":277553,"journal":{"name":"2022 30th Telecommunications Forum (TELFOR)","volume":"18 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Telecommunications Forum (TELFOR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELFOR56187.2022.9983686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Direction of Arrival (DOA) estimation is an active research area in array signal processing. Conventional DOA estimation methods require high computational complexity for the multiple-input and multiple-output (MIMO) radars which require the use virtual data vector. In addition, while most conventional methods perform well in high signal-to-noise ratio (SNR) environments, the results in low SNR conditions are not satisfactory. To address these problems, this paper introduces an architecture composed of denoising convolutional autoencoders (DCAE) and convolutional neural networks (CNN) named as DCAE-CNN architecture. The DCAE is used to restore the data prior to DOA estimation, and CNN is employed to estimate the angle of arrival by mapping the restored data to the corresponding angles. Compared to the conventional MUSIC algorithm, experimental results of the proposed DCAE-CNN scheme demonstrate more satisfactory performance in terms of accuracy in low SNR circumstances and reduce the computation time considerably which makes it’s use possible for in real-time applications.
基于深度学习的MIMO雷达DOA估计
DOA估计是阵列信号处理中一个活跃的研究领域。多输入多输出(MIMO)雷达需要使用虚拟数据向量,传统的DOA估计方法计算量较大。此外,虽然大多数传统方法在高信噪比(SNR)环境下表现良好,但在低信噪比条件下的结果并不令人满意。为了解决这些问题,本文介绍了一种由去噪卷积自编码器(DCAE)和卷积神经网络(CNN)组成的体系结构,称为DCAE-CNN体系结构。在DOA估计之前,使用DCAE对数据进行恢复,并使用CNN将恢复的数据映射到相应的角度来估计到达角度。实验结果表明,与传统MUSIC算法相比,本文提出的DCAE-CNN方案在低信噪比情况下具有更满意的精度性能,并且大大减少了计算时间,可用于实时应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信