I. Forsyth, Megan Dunston, G. Lombardi, G. Rind, S. Ronayne, Y. Wong, C. May, D. Grayden, T. Oxley, N. Opie, Sam E. John
{"title":"Evaluation of a minimally invasive endovascular neural interface for decoding motor activity","authors":"I. Forsyth, Megan Dunston, G. Lombardi, G. Rind, S. Ronayne, Y. Wong, C. May, D. Grayden, T. Oxley, N. Opie, Sam E. John","doi":"10.1109/NER.2019.8717000","DOIUrl":null,"url":null,"abstract":"Endovascular devices like the Stentrode™ provide a minimally invasive approach to brain-machine-interfaces that mitigates safety concerns while maintaining good signal quality. Our research aims to evaluate the feasibility of using a stent-electrode array (Stentrode) to decode movements in sheep. In this study, two sheep were trained to perform an automated forced-choice task designed to elicit left and right head movement following an external stimulus. Cortical, movement-related signals were recorded using a Stentrode placed in the superior sagittal sinus adjacent to the motor cortex. Recorded brain signal was used to train a support vector machine classifier. Our results show that the Stentrode can be used to acquire motor-related brain signals to detect movement of the sheep in a forced-choice task. These results support the validity of using the Stentrode as a minimally invasive brain-machine interface.","PeriodicalId":356177,"journal":{"name":"2019 9th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 9th International IEEE/EMBS Conference on Neural Engineering (NER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2019.8717000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Endovascular devices like the Stentrode™ provide a minimally invasive approach to brain-machine-interfaces that mitigates safety concerns while maintaining good signal quality. Our research aims to evaluate the feasibility of using a stent-electrode array (Stentrode) to decode movements in sheep. In this study, two sheep were trained to perform an automated forced-choice task designed to elicit left and right head movement following an external stimulus. Cortical, movement-related signals were recorded using a Stentrode placed in the superior sagittal sinus adjacent to the motor cortex. Recorded brain signal was used to train a support vector machine classifier. Our results show that the Stentrode can be used to acquire motor-related brain signals to detect movement of the sheep in a forced-choice task. These results support the validity of using the Stentrode as a minimally invasive brain-machine interface.