Tsai-Yen Ko, Liwei Su, Yuchen Chang, Keigo Matsumoto, Takuji Narumi, M. Hirose
{"title":"Evaluate Optimal Redirected Walking Planning Using Reinforcement Learning","authors":"Tsai-Yen Ko, Liwei Su, Yuchen Chang, Keigo Matsumoto, Takuji Narumi, M. Hirose","doi":"10.1109/ISMAR-Adjunct51615.2020.00059","DOIUrl":null,"url":null,"abstract":"Redirected Walking (RDW) is commonly used to overcome the limitation of real walking locomotion while exploring virtual worlds. Although a few machine learning-based RDW algorithm is proposed, most of the system did not go through live user evaluation. In this work, we evaluated a novel RDW controller proposed by Chang et al., in which the formatted steering rule is replaced with reinforcement learning(RL), by simulation and live user experiment. We found the RL-based RDW controller reduced boundary collisions significantly in both simulation and user study comparing to the heuristic algorithm, Steer-to-Center(S2C); also, there are no noticeable differences in immersiveness. These results indicate that the novel controller is superior to the heuristic method. Furthermore, as we conducted experiments in a relatively simple space and still outperformed the heuristic method, we are optimistic that the RL-based controller can maintain the high-performance in complicated scenarios in the future.","PeriodicalId":433361,"journal":{"name":"2020 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)","volume":"50 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMAR-Adjunct51615.2020.00059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Redirected Walking (RDW) is commonly used to overcome the limitation of real walking locomotion while exploring virtual worlds. Although a few machine learning-based RDW algorithm is proposed, most of the system did not go through live user evaluation. In this work, we evaluated a novel RDW controller proposed by Chang et al., in which the formatted steering rule is replaced with reinforcement learning(RL), by simulation and live user experiment. We found the RL-based RDW controller reduced boundary collisions significantly in both simulation and user study comparing to the heuristic algorithm, Steer-to-Center(S2C); also, there are no noticeable differences in immersiveness. These results indicate that the novel controller is superior to the heuristic method. Furthermore, as we conducted experiments in a relatively simple space and still outperformed the heuristic method, we are optimistic that the RL-based controller can maintain the high-performance in complicated scenarios in the future.