Monitoring kraft recovery boiler fouling using principal component analysis

November 2009 Pub Date : 2009-12-01 DOI:10.32964/tj8.11.22
Peter Versteeg, H. Tran
{"title":"Monitoring kraft recovery boiler fouling using principal component analysis","authors":"Peter Versteeg, H. Tran","doi":"10.32964/tj8.11.22","DOIUrl":null,"url":null,"abstract":"Researchers analyzed high resolution operational data from three recovery boilers using the principal component analysis (PCA) feature of a multivariate statistical analysis program to identify major operating variables that contributed to fouling and plugging. The results show that PCA can be used to visualize the variability relative to long-term fouling trends in the boilers and to graphically distinguish changes in the boiler fouling condition caused by operational variability over a short period. This represents a major step forward in identifying operating variables that might be adjusted to minimize fouling, and in developing an online fouling monitoring technology based on PCA.","PeriodicalId":296374,"journal":{"name":"November 2009","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"November 2009","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32964/tj8.11.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Researchers analyzed high resolution operational data from three recovery boilers using the principal component analysis (PCA) feature of a multivariate statistical analysis program to identify major operating variables that contributed to fouling and plugging. The results show that PCA can be used to visualize the variability relative to long-term fouling trends in the boilers and to graphically distinguish changes in the boiler fouling condition caused by operational variability over a short period. This represents a major step forward in identifying operating variables that might be adjusted to minimize fouling, and in developing an online fouling monitoring technology based on PCA.
利用主成分分析法监测硫酸盐回收锅炉污垢
研究人员使用多元统计分析程序的主成分分析(PCA)特征分析了三个回收锅炉的高分辨率运行数据,以确定导致污垢和堵塞的主要运行变量。结果表明,主成分分析可以可视化锅炉长期污垢趋势的变化,并以图形方式区分短期内由运行变化引起的锅炉污垢状况的变化。这代表了在识别操作变量方面迈出的重要一步,这些操作变量可以进行调整,以最大限度地减少污垢,并在开发基于PCA的在线污垢监测技术方面取得了进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信