Performance Analysis of CS Method for Image Reconstruction on Microwave Tomography

Dian Kurnia Imanda, A. Munir
{"title":"Performance Analysis of CS Method for Image Reconstruction on Microwave Tomography","authors":"Dian Kurnia Imanda, A. Munir","doi":"10.1109/TSSA51342.2020.9310844","DOIUrl":null,"url":null,"abstract":"This paper describes the performance analysis of image reconstruction on microwave tomography using the compressive sensing (CS) method. The investigation is carried out by processing an image of tree trunk object with different pixel sizes, i.e. 256×256, 128×128, and 64×64. Performance comparison are assessed using mean square error (MSE) and structural similarity index measure (SSIM). The results of image reconstruction using CS method with 256×256 pixels have the best MSE and SSIM with values of 0.001 and 0.944, respectively. Meanwhile, the image reconstruction with 128×128 pixels is not much different from the one with 256×256 pixels which produces the MSE value of 0.001 and the SSIM value of 0.899. Furthermore, the result of image reconstruction with 64×64 pixels is worst among others and yields a blurry image. However, it has MSE and SSIM values of 0.001 and 0.837, respectively, with fastest computation time compared to other pixel sizes.","PeriodicalId":166316,"journal":{"name":"2020 14th International Conference on Telecommunication Systems, Services, and Applications (TSSA","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 14th International Conference on Telecommunication Systems, Services, and Applications (TSSA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSSA51342.2020.9310844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper describes the performance analysis of image reconstruction on microwave tomography using the compressive sensing (CS) method. The investigation is carried out by processing an image of tree trunk object with different pixel sizes, i.e. 256×256, 128×128, and 64×64. Performance comparison are assessed using mean square error (MSE) and structural similarity index measure (SSIM). The results of image reconstruction using CS method with 256×256 pixels have the best MSE and SSIM with values of 0.001 and 0.944, respectively. Meanwhile, the image reconstruction with 128×128 pixels is not much different from the one with 256×256 pixels which produces the MSE value of 0.001 and the SSIM value of 0.899. Furthermore, the result of image reconstruction with 64×64 pixels is worst among others and yields a blurry image. However, it has MSE and SSIM values of 0.001 and 0.837, respectively, with fastest computation time compared to other pixel sizes.
CS方法在微波断层成像图像重建中的性能分析
本文介绍了利用压缩感知(CS)方法对微波层析成像进行图像重建的性能分析。通过处理不同像素大小的树干对象图像,即256×256, 128×128和64×64,进行调查。性能比较评估使用均方误差(MSE)和结构相似指数测量(SSIM)。以256×256为像素点的CS方法重建图像,MSE和SSIM分别为0.001和0.944,结果最佳。同时,使用128×128像素重建的图像与使用256×256像素重建的图像差异不大,产生的MSE值为0.001,SSIM值为0.899。此外,64×64像素的图像重建结果是最差的,产生一个模糊的图像。然而,它的MSE和SSIM值分别为0.001和0.837,与其他像素尺寸相比,计算时间最快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信