Hybrid Image Segmentation Using RPCCL Clustering and Region Merging

Xinhui Li, Runping Shen, Renxi Chen
{"title":"Hybrid Image Segmentation Using RPCCL Clustering and Region Merging","authors":"Xinhui Li, Runping Shen, Renxi Chen","doi":"10.1109/ICICIS.2011.19","DOIUrl":null,"url":null,"abstract":"Image segmentation is very important to image analysis and satisfying methods are still unfounded. In this paper, we propose a new hybrid segmentation approach based on rival penalized controlled competitive learning (RPCCL) and region merging scheme. In the first, we performed median filtering on input image, and then selected initial color centers by using color quantization technique. During the RPCCL clustering, we merged some close centers to reduce classes. In the end, small regions were merged to produce the final segmentation results. Compared to original RPCCL, our method can overcome over-segmentation and obtain better results.","PeriodicalId":255291,"journal":{"name":"2011 International Conference on Internet Computing and Information Services","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Internet Computing and Information Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIS.2011.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Image segmentation is very important to image analysis and satisfying methods are still unfounded. In this paper, we propose a new hybrid segmentation approach based on rival penalized controlled competitive learning (RPCCL) and region merging scheme. In the first, we performed median filtering on input image, and then selected initial color centers by using color quantization technique. During the RPCCL clustering, we merged some close centers to reduce classes. In the end, small regions were merged to produce the final segmentation results. Compared to original RPCCL, our method can overcome over-segmentation and obtain better results.
基于RPCCL聚类和区域合并的混合图像分割
图像分割对图像分析非常重要,目前还没有令人满意的方法。本文提出了一种基于对手惩罚控制竞争学习(RPCCL)和区域合并的混合分割方法。首先对输入图像进行中值滤波,然后利用颜色量化技术选择初始颜色中心。在RPCCL聚类过程中,我们合并了一些相近的中心来减少类。最后对小区域进行合并,得到最终的分割结果。与原来的RPCCL相比,我们的方法克服了过度分割的问题,获得了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信