Entropy-based environment exploration and stochastic optimal control

M. Baglietto, M. Paolucci, L. Scardovi, R. Zoppoli
{"title":"Entropy-based environment exploration and stochastic optimal control","authors":"M. Baglietto, M. Paolucci, L. Scardovi, R. Zoppoli","doi":"10.1109/CDC.2003.1273072","DOIUrl":null,"url":null,"abstract":"This paper deals with the problem of mapping an unknown environment by a team of autonomous decision makers. A discrete grid map of the environment is considered in which each cell is labeled as free or not free, depending on the presence of an obstacle. The decision makers can communicate with one another. A preliminary study of the problem in the framework of stochastic optimal control is presented. The tradeoff between the exploration cost and the information gain (exploiting the concept of entropy) is addressed. Numerical results show the effectiveness of the approach.","PeriodicalId":371853,"journal":{"name":"42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2003.1273072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper deals with the problem of mapping an unknown environment by a team of autonomous decision makers. A discrete grid map of the environment is considered in which each cell is labeled as free or not free, depending on the presence of an obstacle. The decision makers can communicate with one another. A preliminary study of the problem in the framework of stochastic optimal control is presented. The tradeoff between the exploration cost and the information gain (exploiting the concept of entropy) is addressed. Numerical results show the effectiveness of the approach.
基于熵的环境探索与随机最优控制
本文研究了由自主决策者组成的团队对未知环境进行映射的问题。考虑环境的离散网格图,其中每个单元被标记为自由或不自由,这取决于障碍物的存在。决策者可以相互沟通。本文在随机最优控制的框架下对该问题进行了初步研究。解决了勘探成本和信息增益之间的权衡(利用熵的概念)。数值结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信