A capacity theorem for lattice codes on Gaussian channels

Hélio M. de Oliveira, G. Battail
{"title":"A capacity theorem for lattice codes on Gaussian channels","authors":"Hélio M. de Oliveira, G. Battail","doi":"10.1109/ITS.1990.175563","DOIUrl":null,"url":null,"abstract":"A capacity theorem for lattice code signaling is presented which is based on an upper bound on the error probability introduced by R. de Buda (1975). It is shown that lattice codes can be used to achieve the channel capacity for any signal-to-noise ratio (positive statement), and the negative statement of the capacity theorem is also proved. Sphere hardening is shown to result from the weak law of large numbers. The proof allows a better understanding of the application of dense lattices as an efficient signaling alphabet. An expression of the reliability function E(R,C) for lattices in additive white Gaussian noise channels is also presented.<<ETX>>","PeriodicalId":405932,"journal":{"name":"SBT/IEEE International Symposium on Telecommunications","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SBT/IEEE International Symposium on Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITS.1990.175563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

A capacity theorem for lattice code signaling is presented which is based on an upper bound on the error probability introduced by R. de Buda (1975). It is shown that lattice codes can be used to achieve the channel capacity for any signal-to-noise ratio (positive statement), and the negative statement of the capacity theorem is also proved. Sphere hardening is shown to result from the weak law of large numbers. The proof allows a better understanding of the application of dense lattices as an efficient signaling alphabet. An expression of the reliability function E(R,C) for lattices in additive white Gaussian noise channels is also presented.<>
高斯信道上格码的容量定理
提出了基于R. de Buda(1975)提出的误差概率上界的格码信令容量定理。证明了格码可以用于任意信噪比下的信道容量(正命题),并证明了容量定理的负命题。球体硬化是弱大数定律的结果。该证明可以更好地理解密集格作为有效信号字母表的应用。给出了加性高斯白噪声信道中格的可靠度函数E(R,C)的表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信