{"title":"Data Augmentation for Question Answering Using Transformer-based VAE with Negative Sampling","authors":"Wataru Kano, Koichi Takeuchi","doi":"10.1109/IIAIAAI55812.2022.00097","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method to improve the accuracy of extracting appropriate question-answer pairs using generated questions with negative sampling. The base question-answering system that extracts similar questions for input queries is constructed on a Sentence-BERT model to carry out pairwised-ranking between questions of question-answer data and the input queries. The key issue of improving the question answering system is how we can prepare the enough size and variety of training examples. The Sentence-BERT model is trained on positive and negative pairs of extended questions generated by a Transformer-based Variational Autoencoder as well as human. Experimental results show that performance of retrieving appropriate questions for input queries is improved when the Sentence-BERT model is trained with the negative samples that are most similar to the positive examples.","PeriodicalId":156230,"journal":{"name":"2022 12th International Congress on Advanced Applied Informatics (IIAI-AAI)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 12th International Congress on Advanced Applied Informatics (IIAI-AAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIAIAAI55812.2022.00097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we propose a method to improve the accuracy of extracting appropriate question-answer pairs using generated questions with negative sampling. The base question-answering system that extracts similar questions for input queries is constructed on a Sentence-BERT model to carry out pairwised-ranking between questions of question-answer data and the input queries. The key issue of improving the question answering system is how we can prepare the enough size and variety of training examples. The Sentence-BERT model is trained on positive and negative pairs of extended questions generated by a Transformer-based Variational Autoencoder as well as human. Experimental results show that performance of retrieving appropriate questions for input queries is improved when the Sentence-BERT model is trained with the negative samples that are most similar to the positive examples.