A low power strategy for future mobile terminals

Mladen Nikitovic, M. Brorsson
{"title":"A low power strategy for future mobile terminals","authors":"Mladen Nikitovic, M. Brorsson","doi":"10.1109/DATE.2004.1268938","DOIUrl":null,"url":null,"abstract":"In this paper, we have investigated the efficiency of two power-saving strategies that reduces both static and dynamic power consumption when applied to a chip-multiprocessor (CMP). They are evaluated under two workload scenarios and compared against a conventional uni-processor architecture and a CMP without any power-aware scheduling. The results show that energy due to static and dynamic power consumption can be reduced by up to 78% and that further 8% energy can be saved at the expense of response-time of non-critical applications. Furthermore, a small study on the potential impact of system-level events showed that system calls can contribute significantly to the total energy consumed.","PeriodicalId":335658,"journal":{"name":"Proceedings Design, Automation and Test in Europe Conference and Exhibition","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Design, Automation and Test in Europe Conference and Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATE.2004.1268938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we have investigated the efficiency of two power-saving strategies that reduces both static and dynamic power consumption when applied to a chip-multiprocessor (CMP). They are evaluated under two workload scenarios and compared against a conventional uni-processor architecture and a CMP without any power-aware scheduling. The results show that energy due to static and dynamic power consumption can be reduced by up to 78% and that further 8% energy can be saved at the expense of response-time of non-critical applications. Furthermore, a small study on the potential impact of system-level events showed that system calls can contribute significantly to the total energy consumed.
未来移动终端的低功耗策略
在本文中,我们研究了两种节能策略在应用于芯片多处理器(CMP)时降低静态和动态功耗的效率。在两种工作负载场景下对它们进行评估,并与传统的单处理器架构和没有任何功耗感知调度的CMP进行比较。结果表明,由于静态和动态功耗的能量可以减少高达78%,并且可以在牺牲非关键应用的响应时间的情况下进一步节省8%的能量。此外,一项关于系统级事件潜在影响的小型研究表明,系统调用对消耗的总能量有很大贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信