Maximally Asymmetric Multiple-Valued Functions

J. T. Butler, Tsutomu Sasao
{"title":"Maximally Asymmetric Multiple-Valued Functions","authors":"J. T. Butler, Tsutomu Sasao","doi":"10.1109/ISMVL.2019.00040","DOIUrl":null,"url":null,"abstract":"The asymmetry of a function <tex>$f(x_{1},\\ x_{2},\\ \\ldots,\\ x_{n})$</tex> is the fewest elements of the range of <tex>$f$</tex> that must be changed so that <tex>$f$</tex> becomes a symmetric function. The functions with maximal asymmetry for the case of r-valued n-variable functions have been characterized and counted for <tex>$r=2$</tex> in two previous papers. In this paper, we extend these results to <tex>$r > 2$</tex>. We do this for two types of symmetry, functions whose value is unchanged by 1) any permutation of the variable labels and by 2) any permutation of variable labels and variable values. We also derive the maximum possible asymmetry. We show that, as <tex>$n\\rightarrow\\infty$</tex> and <tex>$r$</tex> is fixed, the maximum asymmetry approaches <tex>$(r-1)r^{n-1}$</tex>.","PeriodicalId":329986,"journal":{"name":"2019 IEEE 49th International Symposium on Multiple-Valued Logic (ISMVL)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 49th International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2019.00040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The asymmetry of a function $f(x_{1},\ x_{2},\ \ldots,\ x_{n})$ is the fewest elements of the range of $f$ that must be changed so that $f$ becomes a symmetric function. The functions with maximal asymmetry for the case of r-valued n-variable functions have been characterized and counted for $r=2$ in two previous papers. In this paper, we extend these results to $r > 2$. We do this for two types of symmetry, functions whose value is unchanged by 1) any permutation of the variable labels and by 2) any permutation of variable labels and variable values. We also derive the maximum possible asymmetry. We show that, as $n\rightarrow\infty$ and $r$ is fixed, the maximum asymmetry approaches $(r-1)r^{n-1}$.
极大非对称多值函数
函数$f(x_{1},\ x_{2},\ \ldots,\ x_{n})$的不对称性是指为使$f$成为对称函数而必须更改的$f$范围中最少的元素。对于r值n变量函数,具有极大不对称性的函数已经在之前的两篇论文中进行了表征和计数$r=2$。在本文中,我们将这些结果推广到$r > 2$。我们对两种对称函数这样做:1)变量标记的任何排列和2)变量标记和变量值的任何排列都不会改变函数的值。我们还推导出了最大可能的不对称。我们证明,当$n\rightarrow\infty$和$r$固定时,最大不对称接近$(r-1)r^{n-1}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信