Pengaruh Komposisi Split data Terhadap Performa Klasifikasi Penyakit Kanker Payudara Menggunakan Algoritma Machine Learning

Ria Oktafiani, Arief Hermawan, Donny Avianto
{"title":"Pengaruh Komposisi Split data Terhadap Performa Klasifikasi Penyakit Kanker Payudara Menggunakan Algoritma Machine Learning","authors":"Ria Oktafiani, Arief Hermawan, Donny Avianto","doi":"10.34128/jsi.v9i1.622","DOIUrl":null,"url":null,"abstract":"Hasil klasifikasi kanker payudara yang tidak tepat dan memiliki akurasi rendah berpotensi membahayakan nyawa pasien. Rasio split data training dan testing mempengaruhi akurasi klasifikasi. Pemilihan rasio split data yang tidak tepat dapat menurunkan akurasi model. Penelitian ini bertujuan menemukan komposisi data terbaik untuk hasil klasifikasi kanker payudara yang baik. Metode yang digunakan adalah holdout dan k-fold cross validation. Algoritma klasifikasi yang dibandingkan adalah SVM, Random Forest, dan Naïve Bayes. Hasil penelitian menunjukkan performa akurasi yang berbeda pada ketiga algoritma tergantung pada metode validasi. Skema holdout validation dengan rasio 75%:25% menghasilkan akurasi terbaik untuk SVM, yaitu 98.89%. Algoritma Random Forest mencapai akurasi terbaik pada rasio split data 55%:45%, yaitu 95.85%. Namun, Naïve Bayes memiliki performa akurasi yang lebih baik saat menggunakan k-fold cross validation dengan akurasi 93.85%. Metode holdout dengan rasio 75:25 terbukti menghasilkan akurasi terbaik untuk klasifikasi data kanker payudara menggunakan SVM. Penelitian selanjutnya dapat menggunakan algoritma deep learning dan memperluas penelitian ke jenis kanker lainnya untuk meningkatkan hasil klasifikasi.","PeriodicalId":426758,"journal":{"name":"Jurnal Sains dan Informatika","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Sains dan Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34128/jsi.v9i1.622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hasil klasifikasi kanker payudara yang tidak tepat dan memiliki akurasi rendah berpotensi membahayakan nyawa pasien. Rasio split data training dan testing mempengaruhi akurasi klasifikasi. Pemilihan rasio split data yang tidak tepat dapat menurunkan akurasi model. Penelitian ini bertujuan menemukan komposisi data terbaik untuk hasil klasifikasi kanker payudara yang baik. Metode yang digunakan adalah holdout dan k-fold cross validation. Algoritma klasifikasi yang dibandingkan adalah SVM, Random Forest, dan Naïve Bayes. Hasil penelitian menunjukkan performa akurasi yang berbeda pada ketiga algoritma tergantung pada metode validasi. Skema holdout validation dengan rasio 75%:25% menghasilkan akurasi terbaik untuk SVM, yaitu 98.89%. Algoritma Random Forest mencapai akurasi terbaik pada rasio split data 55%:45%, yaitu 95.85%. Namun, Naïve Bayes memiliki performa akurasi yang lebih baik saat menggunakan k-fold cross validation dengan akurasi 93.85%. Metode holdout dengan rasio 75:25 terbukti menghasilkan akurasi terbaik untuk klasifikasi data kanker payudara menggunakan SVM. Penelitian selanjutnya dapat menggunakan algoritma deep learning dan memperluas penelitian ke jenis kanker lainnya untuk meningkatkan hasil klasifikasi.
通过算法学习机器,数据分割成分对乳腺癌分类成绩的影响
乳癌的不精确和精确度较低的分类结果可能危及病人的生命。训练和测试数据的分割比影响了分类的准确性。选择不精确的数据分割比可以降低模型的准确性。这项研究的目的是为乳腺癌的良好分类结果找到最好的数据成分。使用的方法是holdout和k-fold交叉验证。比较的分类算法是SVM, Random Forest和Naive Bayes。研究结果显示,三种算法的精确度明显不同,这取决于验证方法。以75%:25%的比例进行的holdout验证方案为SVM带来了最好的准确性,即98。89%。Random Forest算法在数据分割比55%:45%,也就是95%。然而,Naive Bayes在使用k-fold cross验证时表现得更好,准确性为93.85%。采用SVM (SVM)的乳癌数据分类被证明是最准确的。下一项研究可以使用深度学习算法,将研究扩展到另一种癌症,以增加分类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信