Regular Expression Matching with Memristor TCAMs for Network Security

Catherine E. Graves, W. Ma, X. Sheng, B. Buchanan, Le Zheng, Sity Lam, Xuema Li, S. R. Chalamalasetti, Lennie Kiyama, M. Foltin, J. Strachan, Matthew P. Hardy
{"title":"Regular Expression Matching with Memristor TCAMs for Network Security","authors":"Catherine E. Graves, W. Ma, X. Sheng, B. Buchanan, Le Zheng, Sity Lam, Xuema Li, S. R. Chalamalasetti, Lennie Kiyama, M. Foltin, J. Strachan, Matthew P. Hardy","doi":"10.1145/3232195.3232201","DOIUrl":null,"url":null,"abstract":"We propose using memristor-based TCAMs (Ternary Content Addressable Memory) to accelerate Regular Expression (RegEx) matching. RegEx matching is a key function in network security, where deep packet inspection finds and filters out malicious actors. However, RegEx matching latency and power can be incredibly high and current proposals are challenged to perform wire-speed matching for large scale rulesets. Our approach dramatically decreases RegEx matching operating power, provides high throughput, and the use of mTCAMs enables novel compression techniques to expand ruleset sizes and allows future exploitation of the multi-state (analog) capabilities of memristors. We fabricated and demonstrated nanoscale memristor TCAM cells. SPICE simulations investigate mTCAM performance at scale and a mTCAM power model at 22nm demonstrates 0.2 fJ/bit/search energy for a 36×400 mTCAM. We further propose a tiled architecture which implements a Snort rule-set and assess the application performance. Compared to a state-of-the-art FPGA approach (2 Gbps, −1W), we show ×4 throughput (8 Gbps) at 60% the power (0.62W) before applying standard TCAM power-saving techniques. Our performance comparison improves further when striding (searching multiple characters) is considered, resulting in 47.2 Gbps at 1.3W for our approach compared to 3.9 Gbps at 630mW for the strided FPGA NFA, demonstrating a promising path to wire-speed RegEx matching on large scale rulesets.","PeriodicalId":401010,"journal":{"name":"2018 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3232195.3232201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We propose using memristor-based TCAMs (Ternary Content Addressable Memory) to accelerate Regular Expression (RegEx) matching. RegEx matching is a key function in network security, where deep packet inspection finds and filters out malicious actors. However, RegEx matching latency and power can be incredibly high and current proposals are challenged to perform wire-speed matching for large scale rulesets. Our approach dramatically decreases RegEx matching operating power, provides high throughput, and the use of mTCAMs enables novel compression techniques to expand ruleset sizes and allows future exploitation of the multi-state (analog) capabilities of memristors. We fabricated and demonstrated nanoscale memristor TCAM cells. SPICE simulations investigate mTCAM performance at scale and a mTCAM power model at 22nm demonstrates 0.2 fJ/bit/search energy for a 36×400 mTCAM. We further propose a tiled architecture which implements a Snort rule-set and assess the application performance. Compared to a state-of-the-art FPGA approach (2 Gbps, −1W), we show ×4 throughput (8 Gbps) at 60% the power (0.62W) before applying standard TCAM power-saving techniques. Our performance comparison improves further when striding (searching multiple characters) is considered, resulting in 47.2 Gbps at 1.3W for our approach compared to 3.9 Gbps at 630mW for the strided FPGA NFA, demonstrating a promising path to wire-speed RegEx matching on large scale rulesets.
用于网络安全的忆阻TCAMs正则表达式匹配
我们提出使用基于忆阻器的TCAMs(三元内容可寻址存储器)来加速正则表达式(RegEx)匹配。RegEx匹配是网络安全中的一项关键功能,深度包检测可以发现并过滤出恶意行为者。然而,RegEx匹配的延迟和功率可能非常高,并且当前的提案面临着对大规模规则集执行线速匹配的挑战。我们的方法大大降低了RegEx匹配操作功率,提供了高吞吐量,并且使用mtcam使新的压缩技术能够扩展规则集的大小,并允许将来利用忆阻器的多状态(模拟)功能。我们制作并演示了纳米级记忆电阻TCAM细胞。SPICE模拟研究了mTCAM在规模上的性能,mTCAM在22nm下的功率模型显示36×400 mTCAM的搜索能量为0.2 fJ/bit/。我们进一步提出了一个实现Snort规则集并评估应用程序性能的分层架构。与最先进的FPGA方法(2 Gbps, - 1W)相比,在应用标准TCAM节能技术之前,我们显示了在60%功率(0.62W)下×4吞吐量(8 Gbps)。当考虑跨行(搜索多个字符)时,我们的性能比较进一步提高,结果我们的方法在1.3W时达到47.2 Gbps,而跨行FPGA NFA在630mW时达到3.9 Gbps,展示了在大规模规则集上实现线速RegEx匹配的有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信