Optimizing Hadoop parameter for speedup using Q-Learning Reinforcement Learning

Nandita Yambem, A. Nandakumar
{"title":"Optimizing Hadoop parameter for speedup using Q-Learning Reinforcement Learning","authors":"Nandita Yambem, A. Nandakumar","doi":"10.1109/icecct52121.2021.9616965","DOIUrl":null,"url":null,"abstract":"Hadoop is the most popular open source big data processing platform which is being used in many big data analytics applications. The performance of Hadoop can be fine-tuned for application performance requirements by adjusting the value of the some of the configuration parameters. Various methods have been proposed in literature for fine tuning the configuration parameters of Hadoop. The relation between the Hadoop performance tuning parameters and speed up is dependent on the nature of the applications and environment dynamics. Tuning the parameters without consideration of these dynamics results in sub optimal configurations and lower performance.. Adaptive reinforcement learning using Q-Learning is proposed in this work to fine tune the configuration parameters with the objective of reducing the error between desired and achieved service level agreement (SLA).","PeriodicalId":155129,"journal":{"name":"2021 Fourth International Conference on Electrical, Computer and Communication Technologies (ICECCT)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Fourth International Conference on Electrical, Computer and Communication Technologies (ICECCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icecct52121.2021.9616965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Hadoop is the most popular open source big data processing platform which is being used in many big data analytics applications. The performance of Hadoop can be fine-tuned for application performance requirements by adjusting the value of the some of the configuration parameters. Various methods have been proposed in literature for fine tuning the configuration parameters of Hadoop. The relation between the Hadoop performance tuning parameters and speed up is dependent on the nature of the applications and environment dynamics. Tuning the parameters without consideration of these dynamics results in sub optimal configurations and lower performance.. Adaptive reinforcement learning using Q-Learning is proposed in this work to fine tune the configuration parameters with the objective of reducing the error between desired and achieved service level agreement (SLA).
使用Q-Learning强化学习优化Hadoop参数加速
Hadoop是最流行的开源大数据处理平台,被用于许多大数据分析应用程序。通过调整一些配置参数的值,Hadoop的性能可以根据应用程序的性能需求进行微调。文献中已经提出了各种方法来微调Hadoop的配置参数。Hadoop性能调优参数和速度之间的关系取决于应用程序的性质和环境动态。在不考虑这些动态的情况下调优参数会导致次优配置和较低的性能。本文提出了使用Q-Learning的自适应强化学习来微调配置参数,以减少期望服务水平协议(SLA)与实现服务水平协议(SLA)之间的误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信