Self-Organized Construction by Population Coding

Michael Niess, Heiko Hamann
{"title":"Self-Organized Construction by Population Coding","authors":"Michael Niess, Heiko Hamann","doi":"10.1109/FAS-W.2019.00058","DOIUrl":null,"url":null,"abstract":"The automatic generation of robot controllers by machine learning or evolutionary computation is still challenging and even more so for collective robotics. We follow the recently proposed paradigm of 'population coding' to compose robot swarms for collective construction. We define a controller template as finite state machine, enumerate a finite number of specified robot controller types to choose from, and use evolutionary robotics to evolve effective homogeneous and heterogeneous compositions of robot swarms using selections of these controllers. Besides an objective for solving the actual construction task we also add objectives for subtasks, and to minimize the number of different chosen robot types. For three variants of a collective construction task we find effective solutions with both homogeneous and heterogeneous swarms.","PeriodicalId":368308,"journal":{"name":"2019 IEEE 4th International Workshops on Foundations and Applications of Self* Systems (FAS*W)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 4th International Workshops on Foundations and Applications of Self* Systems (FAS*W)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FAS-W.2019.00058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The automatic generation of robot controllers by machine learning or evolutionary computation is still challenging and even more so for collective robotics. We follow the recently proposed paradigm of 'population coding' to compose robot swarms for collective construction. We define a controller template as finite state machine, enumerate a finite number of specified robot controller types to choose from, and use evolutionary robotics to evolve effective homogeneous and heterogeneous compositions of robot swarms using selections of these controllers. Besides an objective for solving the actual construction task we also add objectives for subtasks, and to minimize the number of different chosen robot types. For three variants of a collective construction task we find effective solutions with both homogeneous and heterogeneous swarms.
基于群体编码的自组织结构
通过机器学习或进化计算自动生成机器人控制器仍然具有挑战性,对于集体机器人来说更是如此。我们遵循最近提出的“人口编码”范式,组成机器人群体进行集体建设。我们将控制器模板定义为有限状态机,列举有限数量的指定机器人控制器类型供选择,并使用进化机器人技术通过这些控制器的选择来进化有效的同质和异质机器人群组成。除了解决实际施工任务的目标外,我们还为子任务添加了目标,并尽量减少选择的不同机器人类型的数量。对于集体建设任务的三个变体,我们找到了具有同质和异质群体的有效解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信