Using Fishervoice to enhance the performance of I-vector based speaker verification system

Na Li, Xiangyang Zeng, Zhifeng Li, Y. Qiao, W. Jiang
{"title":"Using Fishervoice to enhance the performance of I-vector based speaker verification system","authors":"Na Li, Xiangyang Zeng, Zhifeng Li, Y. Qiao, W. Jiang","doi":"10.1109/ICIST.2014.6920544","DOIUrl":null,"url":null,"abstract":"I-vector is a popular feature representation technique in speaker verification systems. In this paper, we use Fishervoice algorithm in combination with i-vector feature representation to improve speaker verification performance. By applying the Fishervoice model to map the i-vector into a low-dimensional discriminant subspace, the intra-speaker variability can be reduced and the discriminative class boundary information can be emphasized for enhanced recognition performance. Experiments on NIST SRE 2008 core test task show that the proposed framework achieves 19.9% and 8.5% dramatic relative decrease in EER and minDCF metrics respectively compared to the state-of-the-art PLDA based method.","PeriodicalId":306383,"journal":{"name":"2014 4th IEEE International Conference on Information Science and Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 4th IEEE International Conference on Information Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST.2014.6920544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

I-vector is a popular feature representation technique in speaker verification systems. In this paper, we use Fishervoice algorithm in combination with i-vector feature representation to improve speaker verification performance. By applying the Fishervoice model to map the i-vector into a low-dimensional discriminant subspace, the intra-speaker variability can be reduced and the discriminative class boundary information can be emphasized for enhanced recognition performance. Experiments on NIST SRE 2008 core test task show that the proposed framework achieves 19.9% and 8.5% dramatic relative decrease in EER and minDCF metrics respectively compared to the state-of-the-art PLDA based method.
利用Fishervoice增强基于i向量的说话人验证系统的性能
i向量是说话人验证系统中常用的特征表示技术。在本文中,我们使用fishvoice算法结合i-vector特征表示来提高说话人验证性能。利用Fishervoice模型将i向量映射到低维判别子空间中,可以降低说话人内部的可变性,并强调判别类边界信息,从而提高识别性能。在NIST SRE 2008核心测试任务上的实验表明,与最先进的基于PLDA的方法相比,该框架的EER和minDCF指标分别显著降低了19.9%和8.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信