Efficient Implementation of Memristor Cellular Nonlinear Networks using Stochastic Computing

O. Camps, S. Stavrinides, R. Picos
{"title":"Efficient Implementation of Memristor Cellular Nonlinear Networks using Stochastic Computing","authors":"O. Camps, S. Stavrinides, R. Picos","doi":"10.1109/ECCTD49232.2020.9218298","DOIUrl":null,"url":null,"abstract":"Cellular Nonlinear Networks (CNN) were intro-duced by Leon Chua and Lin Yang in 1988, and are shown to be a very powerful parallel computing architecture. Later on, CNN have been designed using the processing and memory capabilities of memristors. On the other hand, Stochastic Computing (SC) has been proposed as a way to reduce the number of processing elements in a circuits. In this work, we propose using SC to implement a CNN. Specifically, we choose a memristor-based CNN, where all the operations are done using SC. As an example of application, we have used Matlab to create a CNN that performs edge detection on 512x512 grey-scale images. Results show excellent capability, while at the same time the low number of needed elements will allow to implement it in a low cost FPGA-based system.","PeriodicalId":336302,"journal":{"name":"2020 European Conference on Circuit Theory and Design (ECCTD)","volume":"71 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 European Conference on Circuit Theory and Design (ECCTD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCTD49232.2020.9218298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Cellular Nonlinear Networks (CNN) were intro-duced by Leon Chua and Lin Yang in 1988, and are shown to be a very powerful parallel computing architecture. Later on, CNN have been designed using the processing and memory capabilities of memristors. On the other hand, Stochastic Computing (SC) has been proposed as a way to reduce the number of processing elements in a circuits. In this work, we propose using SC to implement a CNN. Specifically, we choose a memristor-based CNN, where all the operations are done using SC. As an example of application, we have used Matlab to create a CNN that performs edge detection on 512x512 grey-scale images. Results show excellent capability, while at the same time the low number of needed elements will allow to implement it in a low cost FPGA-based system.
基于随机计算的忆阻器细胞非线性网络的高效实现
细胞非线性网络(CNN)是由Leon Chua和Lin Yang于1988年提出的,并被证明是一种非常强大的并行计算架构。后来,CNN的设计利用了忆阻器的处理和存储能力。另一方面,随机计算(SC)已被提出作为一种减少电路中处理元件数量的方法。在这项工作中,我们建议使用SC来实现CNN。具体来说,我们选择了一个基于忆阻器的CNN,其中所有的操作都是使用SC完成的。作为一个应用示例,我们使用Matlab创建了一个在512x512灰度图像上执行边缘检测的CNN。结果显示出优异的性能,同时所需元件数量少,可以在低成本的fpga系统中实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信