Concurrent min-max simulation

E. Ulrich, K. Panetta, S. Demba, R. Razdan
{"title":"Concurrent min-max simulation","authors":"E. Ulrich, K. Panetta, S. Demba, R. Razdan","doi":"10.1109/EDAC.1991.206469","DOIUrl":null,"url":null,"abstract":"Parametric process variations, which are inherent in the manufacture of complex digital circuits, can cause variations in the timing characteristics of a digital device. These device timing variations can cause catastrophic failures to the intended logical operation of the whole design. Min-max timing simulation is simulation technique which is well suited to verify that a given design functions correctly, even under the influence of parametric process variations. Unfortunately, in the past, min-max timing simulation has been very expensive in simulation CPU time and in the amount of memory consumed. The authors present a technique, concurrent min-max simulation (CMMS), which employs the techniques developed in concurrent fault simulation, to elegantly solve the min-max timing simulation problem.<<ETX>>","PeriodicalId":425087,"journal":{"name":"Proceedings of the European Conference on Design Automation.","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the European Conference on Design Automation.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDAC.1991.206469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Parametric process variations, which are inherent in the manufacture of complex digital circuits, can cause variations in the timing characteristics of a digital device. These device timing variations can cause catastrophic failures to the intended logical operation of the whole design. Min-max timing simulation is simulation technique which is well suited to verify that a given design functions correctly, even under the influence of parametric process variations. Unfortunately, in the past, min-max timing simulation has been very expensive in simulation CPU time and in the amount of memory consumed. The authors present a technique, concurrent min-max simulation (CMMS), which employs the techniques developed in concurrent fault simulation, to elegantly solve the min-max timing simulation problem.<>
并发最小-最大仿真
复杂数字电路制造中固有的参数过程变化会导致数字器件的时序特性变化。这些器件时序变化可能导致整个设计的预期逻辑操作的灾难性故障。最小-最大时序仿真是一种仿真技术,它非常适合于验证给定设计的正确功能,即使在参数过程变化的影响下。不幸的是,在过去,最小-最大计时模拟在模拟CPU时间和消耗的内存量方面非常昂贵。作者提出了一种并行最小-最大仿真技术(CMMS),该技术采用了并行故障仿真技术,很好地解决了最小-最大时序仿真问题
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信