Semantic Segmentation for People Detection on Beach Images

Leonardo de A. Monte, Emília G. Oliveira, F. Cordeiro, V. Macário
{"title":"Semantic Segmentation for People Detection on Beach Images","authors":"Leonardo de A. Monte, Emília G. Oliveira, F. Cordeiro, V. Macário","doi":"10.5753/eniac.2021.18295","DOIUrl":null,"url":null,"abstract":"Nosso trabalho compara um conjunto de redes de segmentação semântica aplicados na detecção de pessoas em imagens de praia, como parte de um sistema de rastreamento automático para evitar que banhistas ultrapassem a região segura do mar. Em nossa análise, comparamos as redes de segmentação U-net, X-net, Linknet, e Unet++ usando os backbones prétreinados VGG-16 e VGG-19. Nós propomos nossa própria base de imagens, composta de 300 imagens. Os modelos foram avaliados utilizando a métrica F-score. Nossos resultados mostraram que a Linknet obteve o melhor valor de F-score, com 90.89%, enquanto a Linknet foi mais rápida que as outras redes, sem diferença estatística significativa.","PeriodicalId":318676,"journal":{"name":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2021.18295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nosso trabalho compara um conjunto de redes de segmentação semântica aplicados na detecção de pessoas em imagens de praia, como parte de um sistema de rastreamento automático para evitar que banhistas ultrapassem a região segura do mar. Em nossa análise, comparamos as redes de segmentação U-net, X-net, Linknet, e Unet++ usando os backbones prétreinados VGG-16 e VGG-19. Nós propomos nossa própria base de imagens, composta de 300 imagens. Os modelos foram avaliados utilizando a métrica F-score. Nossos resultados mostraram que a Linknet obteve o melhor valor de F-score, com 90.89%, enquanto a Linknet foi mais rápida que as outras redes, sem diferença estatística significativa.
基于语义分割的海滩图像人物检测
工作比较一组分割语义网络应用于检测人在海滩的照片,一个自动跟踪系统的一部分以避免游泳者大于该地区安全的资源,在我们的分析,比较网络分割X U净净,Linknet Unet + +使用互联网prétreinados VGG -16和-19 VGG。我们提出了自己的图像数据库,由300张图像组成。使用F-score度量对模型进行评估。结果显示,Linknet的F-score值最好,为90.89%,而Linknet的F-score值比其他网络快,无统计学差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信