A computationally light-weight real-time classification method to identify different ECG signals

F. Chin, Q. Fang, I. Cosic
{"title":"A computationally light-weight real-time classification method to identify different ECG signals","authors":"F. Chin, Q. Fang, I. Cosic","doi":"10.1109/ISBB.2011.6107703","DOIUrl":null,"url":null,"abstract":"Ventricular arrhythmia is the main cause of cardiac arrest in patients with chronic heart disease. An undetected episode of ventricular tachycardia (VT) can be fatal if emergency medical assistance is not provided. Therefore, it is important to devise a real-time mobile ECG signal analysis algorithm for detection of ventricular tachycardia (VT). This paper presents an algorithm for automatic identification of normal sinus rhythm (NSR) and ventricular tachycardia (VT) which is applicable in a mobile environment. The algorithm employs peak-valley detector and cross-correlation technique to compute a feature vector. The selected features are beats-per-minute (BPM), NSR template accuracy and VT template accuracy. Based on the selected features, a fuzzy k-NN classifier is trained for classification. The algorithm specificity and sensitivity for classifying between NSR and VT ECG signal is 92.5% and 93.5% respectively.","PeriodicalId":345164,"journal":{"name":"International Symposium on Bioelectronics and Bioinformations 2011","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Bioelectronics and Bioinformations 2011","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBB.2011.6107703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Ventricular arrhythmia is the main cause of cardiac arrest in patients with chronic heart disease. An undetected episode of ventricular tachycardia (VT) can be fatal if emergency medical assistance is not provided. Therefore, it is important to devise a real-time mobile ECG signal analysis algorithm for detection of ventricular tachycardia (VT). This paper presents an algorithm for automatic identification of normal sinus rhythm (NSR) and ventricular tachycardia (VT) which is applicable in a mobile environment. The algorithm employs peak-valley detector and cross-correlation technique to compute a feature vector. The selected features are beats-per-minute (BPM), NSR template accuracy and VT template accuracy. Based on the selected features, a fuzzy k-NN classifier is trained for classification. The algorithm specificity and sensitivity for classifying between NSR and VT ECG signal is 92.5% and 93.5% respectively.
一种计算量轻的实时心电信号分类方法
室性心律失常是慢性心脏病患者心脏骤停的主要原因。如果不提供紧急医疗援助,未被发现的室性心动过速(VT)可能是致命的。因此,设计一种实时移动心电信号分析算法检测室性心动过速具有重要意义。提出了一种适用于移动环境的正常窦性心律(NSR)和室性心动过速(VT)自动识别算法。该算法采用峰谷检测和互相关技术计算特征向量。选择的特征是每分钟节拍(BPM), NSR模板精度和VT模板精度。基于所选择的特征,训练模糊k-NN分类器进行分类。算法对NSR和VT心电信号分类的特异性和灵敏度分别为92.5%和93.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信