Online and incremental contextual task learning and recognition for sharing autonomy to assist mobile robot teleoperation

Ming Gao, T. Schamm, Johann Marius Zöllner
{"title":"Online and incremental contextual task learning and recognition for sharing autonomy to assist mobile robot teleoperation","authors":"Ming Gao, T. Schamm, Johann Marius Zöllner","doi":"10.1109/ROBIO.2015.7419076","DOIUrl":null,"url":null,"abstract":"This contribution proposes a fast online approach to learn and recognize the contextual tasks incrementally, with the aim of assisting mobile robot teleoperation by efficiently facilitating autonomy sharing, which improves our previous approach, where a batch mode was adopted to obtain the model for task recognition. We employ a fast online Gaussian Mixture Regression (GMR) model combined with a recursive Bayesian filter (RBF) to infer the most probable contextual task the human operator executes across multiple candidate targets, which is capable of incorporating demonstrations incrementally. The overall system is evaluated with a set of tests in a cluttered indoor scenario and shows good performance.","PeriodicalId":325536,"journal":{"name":"2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2015.7419076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This contribution proposes a fast online approach to learn and recognize the contextual tasks incrementally, with the aim of assisting mobile robot teleoperation by efficiently facilitating autonomy sharing, which improves our previous approach, where a batch mode was adopted to obtain the model for task recognition. We employ a fast online Gaussian Mixture Regression (GMR) model combined with a recursive Bayesian filter (RBF) to infer the most probable contextual task the human operator executes across multiple candidate targets, which is capable of incorporating demonstrations incrementally. The overall system is evaluated with a set of tests in a cluttered indoor scenario and shows good performance.
基于共享自主性的在线和增量上下文任务学习和识别辅助移动机器人遥操作
这一贡献提出了一种快速的在线方法来逐步学习和识别上下文任务,目的是通过有效地促进自主共享来协助移动机器人远程操作,这改进了我们之前的方法,其中采用批处理模式来获得任务识别模型。我们采用快速在线高斯混合回归(GMR)模型结合递归贝叶斯滤波器(RBF)来推断人类操作员在多个候选目标上执行的最可能的上下文任务,该模型能够逐步纳入演示。整个系统在混乱的室内场景中进行了一系列测试,并显示出良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信