THE HEAT TRANSFER AND MAGNETOHYDRODYNAMICS PROBLEM WITH HEAT SOURCE IN HALF INFINITE 1-D DOMAIN

H. Kalis, I. Kangro
{"title":"THE HEAT TRANSFER AND MAGNETOHYDRODYNAMICS PROBLEM WITH HEAT SOURCE IN HALF INFINITE 1-D DOMAIN","authors":"H. Kalis, I. Kangro","doi":"10.17770/etr2023vol2.7249","DOIUrl":null,"url":null,"abstract":"In this paper we consider the temperature and laminar flow of an incompressible conducting fluid past a non-conducting half-space. For the space approximation the finite differences method-finite difference scheme (FDS) and finite difference scheme with exact spectrum (FDSES) for solving the heat transfer and laminar flow initial boundary-value problem are used. This procedure allows reducing the problem to initial value problem for ordinary differential equations and the solution to the problem can be obtained numerically and analytically. The equation of the temperature is un-depending on the velocity and this function we can obtain in analytical form use the integral transform methods- Fourier and Laplace transforms.  ","PeriodicalId":332103,"journal":{"name":"ENVIRONMENT. TECHNOLOGIES. RESOURCES. Proceedings of the International Scientific and Practical Conference","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ENVIRONMENT. TECHNOLOGIES. RESOURCES. Proceedings of the International Scientific and Practical Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17770/etr2023vol2.7249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we consider the temperature and laminar flow of an incompressible conducting fluid past a non-conducting half-space. For the space approximation the finite differences method-finite difference scheme (FDS) and finite difference scheme with exact spectrum (FDSES) for solving the heat transfer and laminar flow initial boundary-value problem are used. This procedure allows reducing the problem to initial value problem for ordinary differential equations and the solution to the problem can be obtained numerically and analytically. The equation of the temperature is un-depending on the velocity and this function we can obtain in analytical form use the integral transform methods- Fourier and Laplace transforms.  
一维半无限域中热源的传热与磁流体动力学问题
本文考虑了不可压缩导电流体经过非导电半空间时的温度和层流问题。对于空间逼近,采用有限差分法-有限差分格式(FDS)和精确谱有限差分格式(FDSES)求解传热和层流初边值问题。这个程序可以将问题简化为常微分方程的初值问题,并且可以用数值和解析的方法得到问题的解。温度的方程不依赖于速度,我们可以用积分变换方法——傅里叶变换和拉普拉斯变换——得到这个函数的解析形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信