Data-Driven Model Predictive Current Control for Synchronous Machines: a Koopman Operator Approach

Horacio M. Calderón, I. Hammoud, T. Oehlschlägel, H. Werner, R. Kennel
{"title":"Data-Driven Model Predictive Current Control for Synchronous Machines: a Koopman Operator Approach","authors":"Horacio M. Calderón, I. Hammoud, T. Oehlschlägel, H. Werner, R. Kennel","doi":"10.1109/speedam53979.2022.9842164","DOIUrl":null,"url":null,"abstract":"In this paper, a data-driven continuous control set model predictive current control (CCS-MPCC) scheme for permanent magnet synchronous motors (PMSMs) is proposed. The model of the motor used in the model predictive control (MPC) strategy is obtained from collected measurements using the Koopman operator (KO) theory. Experimental results on a 500W PMSM show that the obtained model has yielded excellent prediction accuracy, and that it is capable of being incorporated within a real-time CCS-MPCC scheme in the sub-millisecond typically available sampling time for the current control loop of synchronous motors.","PeriodicalId":365235,"journal":{"name":"2022 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/speedam53979.2022.9842164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, a data-driven continuous control set model predictive current control (CCS-MPCC) scheme for permanent magnet synchronous motors (PMSMs) is proposed. The model of the motor used in the model predictive control (MPC) strategy is obtained from collected measurements using the Koopman operator (KO) theory. Experimental results on a 500W PMSM show that the obtained model has yielded excellent prediction accuracy, and that it is capable of being incorporated within a real-time CCS-MPCC scheme in the sub-millisecond typically available sampling time for the current control loop of synchronous motors.
同步电机数据驱动模型预测电流控制:一种Koopman算子方法
提出了一种用于永磁同步电动机的数据驱动连续控制集模型预测电流控制(CCS-MPCC)方案。模型预测控制(MPC)策略中使用的电机模型是利用库普曼算子(Koopman operator, KO)理论从收集的测量数据中获得的。在500W永磁同步电机上的实验结果表明,该模型具有良好的预测精度,能够在亚毫秒的采样时间内将其纳入同步电机电流控制环的实时CCS-MPCC方案中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信