{"title":"Executing synchronous dataflow graphs on a SPM-based multicore architecture","authors":"Junchul Choi, Hyunok Oh, Sungchan Kim, S. Ha","doi":"10.1145/2228360.2228480","DOIUrl":null,"url":null,"abstract":"In this paper we are concerned about executing synchronous dataflow (SDF) applications on a multicore architecture where a core has a limited size of scratchpad memory (SPM). Unlike traditional multi-processor scheduling of SDF graphs, we consider the SPM size limitation that incurs code and data overlay overhead. Since the scheduling problem is intractable, we propose an EA(evolutionary algorithm)-based technique. To hide memory latency, prefetching is aggressively performed in the proposed technique. The experimental results show that our approach reduces the overlay overhead significantly compared to a non-optimized approach and the previous approach.","PeriodicalId":263599,"journal":{"name":"DAC Design Automation Conference 2012","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DAC Design Automation Conference 2012","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2228360.2228480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48
Abstract
In this paper we are concerned about executing synchronous dataflow (SDF) applications on a multicore architecture where a core has a limited size of scratchpad memory (SPM). Unlike traditional multi-processor scheduling of SDF graphs, we consider the SPM size limitation that incurs code and data overlay overhead. Since the scheduling problem is intractable, we propose an EA(evolutionary algorithm)-based technique. To hide memory latency, prefetching is aggressively performed in the proposed technique. The experimental results show that our approach reduces the overlay overhead significantly compared to a non-optimized approach and the previous approach.