Automatic statistical determination of dislocation density in production SOI substrates

L. Allen, A. Genis, C. Jacobs, S.M. Allen, M. Snorrason, G. Zacharias
{"title":"Automatic statistical determination of dislocation density in production SOI substrates","authors":"L. Allen, A. Genis, C. Jacobs, S.M. Allen, M. Snorrason, G. Zacharias","doi":"10.1109/SOI.1995.526446","DOIUrl":null,"url":null,"abstract":"Summarizes a successful prototype demonstration of an automatic etch pit counting system which employs a neural network program for dislocation identification over a wide exponential range required for SOI material analysis. Overall results indicate that the automatic dislocation counting system is feasible to employ in SIMOX manufacturing. The neural network system exhibited sufficient capability for accurate dislocation density analysis of both standard and thin BOX SIMOX material, with clear recognition and classification of enhanced silicon defects.","PeriodicalId":149490,"journal":{"name":"1995 IEEE International SOI Conference Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1995-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1995 IEEE International SOI Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOI.1995.526446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summarizes a successful prototype demonstration of an automatic etch pit counting system which employs a neural network program for dislocation identification over a wide exponential range required for SOI material analysis. Overall results indicate that the automatic dislocation counting system is feasible to employ in SIMOX manufacturing. The neural network system exhibited sufficient capability for accurate dislocation density analysis of both standard and thin BOX SIMOX material, with clear recognition and classification of enhanced silicon defects.
生产SOI衬底中位错密度的自动统计测定
总结了一个自动蚀刻坑计数系统的成功原型演示,该系统采用神经网络程序在SOI材料分析所需的大指数范围内进行位错识别。综上所述,位错自动计数系统在SIMOX制造中是可行的。该神经网络系统对标准和薄型BOX SIMOX材料的位错密度分析均表现出足够的准确能力,对增强的硅缺陷有清晰的识别和分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信