Improving the Performance of Multi-Label Classifiers via Label Space Reduction

J. M. Moyano, J. M. Luna, Sebastián Ventura
{"title":"Improving the Performance of Multi-Label Classifiers via Label Space Reduction","authors":"J. M. Moyano, J. M. Luna, Sebastián Ventura","doi":"10.1109/COINS54846.2022.9854940","DOIUrl":null,"url":null,"abstract":"Multi-label classification is related to the problem of learning a predictive model from examples that may be associated with a set of labels simultaneously. The learning process in datasets with large label spaces turns into a really challenging task since the computational complexity of most algorithms depends on the number of existing labels. This paper proposes a methodology for reducing the label space a predefined percentage of labels, with the aim of improving the runtime of the multi-label algorithms without producing a significant variation in the predictive performance. The experimental analysis demonstrates a drastic reduction in runtime, while proving that in many cases, the reduction of the label space up to 50% does not significantly affect the performance using four well-known evaluation measures.","PeriodicalId":187055,"journal":{"name":"2022 IEEE International Conference on Omni-layer Intelligent Systems (COINS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Omni-layer Intelligent Systems (COINS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COINS54846.2022.9854940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-label classification is related to the problem of learning a predictive model from examples that may be associated with a set of labels simultaneously. The learning process in datasets with large label spaces turns into a really challenging task since the computational complexity of most algorithms depends on the number of existing labels. This paper proposes a methodology for reducing the label space a predefined percentage of labels, with the aim of improving the runtime of the multi-label algorithms without producing a significant variation in the predictive performance. The experimental analysis demonstrates a drastic reduction in runtime, while proving that in many cases, the reduction of the label space up to 50% does not significantly affect the performance using four well-known evaluation measures.
通过标签空间约简提高多标签分类器的性能
多标签分类涉及到从可能同时与一组标签相关联的示例中学习预测模型的问题。由于大多数算法的计算复杂度取决于现有标签的数量,因此在具有大标签空间的数据集中学习过程变成了一项非常具有挑战性的任务。本文提出了一种减少标签空间的方法(预定义的标签百分比),旨在改善多标签算法的运行时间,而不会产生显著的预测性能变化。实验分析证明了运行时间的急剧减少,同时证明在许多情况下,使用四种众所周知的评估措施,将标签空间减少50%不会显着影响性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信