Optimization of Input Values of Simulated Motors Using Grey Relational Analysis

A. Purvee, Otgonchimeg Choidorj
{"title":"Optimization of Input Values of Simulated Motors Using Grey Relational Analysis","authors":"A. Purvee, Otgonchimeg Choidorj","doi":"10.1109/ICECCE52056.2021.9514153","DOIUrl":null,"url":null,"abstract":"Studying motor faults and their behavior first requires simulating a healthy squirrel cage induction motor, which is achieved when the output values and the target values are similar. In initial experimental results, the output values did not reach target values. The three target values are stator nominal current, nominal torque, and nominal rotational speed per minute (rpm) on the nameplate of the actual motor. Therefore, the goal of this research was to determine the optimum values for the six input parameters that contribute to the minimum difference between the output and target values. This was conducted using MATLAB SIMULINK and evaluated using the Grey relational analysis. Two simulated motors are used to optimize inputs for getting output values that are very closed to the target values. The output values of the simulated motor were almost identical (98.5-99%) to the values of targets on the nameplate data on the actual motor in the laboratory. Therefore, the output values of the simulated motor allow us to study motor faults experimentally. Another result is that a new equation was developed during this research work.","PeriodicalId":302947,"journal":{"name":"2021 International Conference on Electrical, Communication, and Computer Engineering (ICECCE)","volume":"127 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Electrical, Communication, and Computer Engineering (ICECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECCE52056.2021.9514153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Studying motor faults and their behavior first requires simulating a healthy squirrel cage induction motor, which is achieved when the output values and the target values are similar. In initial experimental results, the output values did not reach target values. The three target values are stator nominal current, nominal torque, and nominal rotational speed per minute (rpm) on the nameplate of the actual motor. Therefore, the goal of this research was to determine the optimum values for the six input parameters that contribute to the minimum difference between the output and target values. This was conducted using MATLAB SIMULINK and evaluated using the Grey relational analysis. Two simulated motors are used to optimize inputs for getting output values that are very closed to the target values. The output values of the simulated motor were almost identical (98.5-99%) to the values of targets on the nameplate data on the actual motor in the laboratory. Therefore, the output values of the simulated motor allow us to study motor faults experimentally. Another result is that a new equation was developed during this research work.
基于灰色关联分析的仿真电机输入值优化
研究电机故障及其行为首先需要模拟一个健康的鼠笼式感应电机,这是在输出值和目标值相似时实现的。在最初的实验结果中,输出值没有达到目标值。三个目标值是实际电机铭牌上的定子公称电流、公称转矩和公称每分钟转速(rpm)。因此,本研究的目标是确定六个输入参数的最优值,使输出值与目标值之间的差异最小。这是用MATLAB SIMULINK进行的,并使用灰色关联分析进行评估。两个模拟电机用于优化输入,以获得非常接近目标值的输出值。模拟电机的输出值与实验室实际电机铭牌数据上的目标值几乎相同(98.5-99%)。因此,仿真电机的输出值可以让我们对电机故障进行实验研究。另一个结果是在研究过程中建立了一个新的方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信