Modern Hardware Margins: CPUs, GPUs, FPGAs Recent System-Level Studies

D. Gizopoulos, G. Papadimitriou, Athanasios Chatzidimitriou, V. Reddi, Behzad Salami, O. Unsal, A. Cristal, Jingwen Leng
{"title":"Modern Hardware Margins: CPUs, GPUs, FPGAs Recent System-Level Studies","authors":"D. Gizopoulos, G. Papadimitriou, Athanasios Chatzidimitriou, V. Reddi, Behzad Salami, O. Unsal, A. Cristal, Jingwen Leng","doi":"10.1109/IOLTS.2019.8854386","DOIUrl":null,"url":null,"abstract":"Modern large-scale computing systems (data centers, supercomputers, cloud and edge setups and high-end cyber-physical systems) employ heterogeneous architectures that consist of multicore CPUs, general-purpose many-core GPUs, and programmable FPGAs. The effective utilization of these architectures poses several challenges, among which a primary one is power consumption. Voltage reduction is one of the most efficient methods to reduce power consumption of a chip. With the galloping adoption of hardware accelerators (i.e., GPUs and FPGAs) in large datacenters and other large-scale computing infrastructures, a comprehensive evaluation of the safe voltage reduction levels for each different chip can be employed for efficient reduction of the total power. We present a survey of recent studies in voltage margins reduction at the system level for modern CPUs, GPUs and FPGAs. The pessimistic voltage guardbands inserted by the silicon vendors can be exploited in all devices for significant power savings. Voltage reduction can reach 12% in multicore CPUs, 20% in manycore GPUs and 39% in FPGAs.","PeriodicalId":383056,"journal":{"name":"2019 IEEE 25th International Symposium on On-Line Testing and Robust System Design (IOLTS)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 25th International Symposium on On-Line Testing and Robust System Design (IOLTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IOLTS.2019.8854386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Modern large-scale computing systems (data centers, supercomputers, cloud and edge setups and high-end cyber-physical systems) employ heterogeneous architectures that consist of multicore CPUs, general-purpose many-core GPUs, and programmable FPGAs. The effective utilization of these architectures poses several challenges, among which a primary one is power consumption. Voltage reduction is one of the most efficient methods to reduce power consumption of a chip. With the galloping adoption of hardware accelerators (i.e., GPUs and FPGAs) in large datacenters and other large-scale computing infrastructures, a comprehensive evaluation of the safe voltage reduction levels for each different chip can be employed for efficient reduction of the total power. We present a survey of recent studies in voltage margins reduction at the system level for modern CPUs, GPUs and FPGAs. The pessimistic voltage guardbands inserted by the silicon vendors can be exploited in all devices for significant power savings. Voltage reduction can reach 12% in multicore CPUs, 20% in manycore GPUs and 39% in FPGAs.
现代硬件边际:cpu, gpu, fpga最近的系统级研究
现代大型计算系统(数据中心、超级计算机、云和边缘设置以及高端网络物理系统)采用由多核cpu、通用多核gpu和可编程fpga组成的异构架构。这些架构的有效利用带来了一些挑战,其中最主要的挑战是功耗。降低电压是降低芯片功耗的最有效方法之一。随着硬件加速器(即gpu和fpga)在大型数据中心和其他大型计算基础设施中的快速采用,可以对每个不同芯片的安全电压降低水平进行全面评估,以有效降低总功率。我们提出了最近的研究在电压裕度降低在系统级为现代cpu, gpu和fpga的调查。硅供应商插入的悲观电压保护带可以在所有设备中使用,以显着节省电力。在多核cpu中,电压降低可以达到12%,在多核gpu中可以达到20%,在fpga中可以达到39%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信