Ces`aro means of negative order of the one-dimensional Vilenkin-Fourier series

T. Tepnadze
{"title":"Ces`aro means of negative order of the one-dimensional Vilenkin-Fourier series","authors":"T. Tepnadze","doi":"10.32523/bulmathenu.2021/2.1","DOIUrl":null,"url":null,"abstract":"In [1] has been proved some inequalities related to the approximation properties of Ces`aro means of negative order of the one-dimensional Vilenkin-Fourier series. These inequalities allow one to obtain a sufficient condition for the convergence of Ces`aro means of VilenkinFourier series in the L^p− metric in the term of modulus of continuity. In this paper, we will prove the sharpness of these conditions, in particular we find a continuous function under some condition of modulo of continuity, for which Ces`aro means of Vilenkin-Fourier series diverge in the L^p− metric.","PeriodicalId":225533,"journal":{"name":"BULLETIN of L.N. Gumilyov Eurasian National University. MATHEMATICS. COMPUTER SCIENCE. MECHANICS Series","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BULLETIN of L.N. Gumilyov Eurasian National University. MATHEMATICS. COMPUTER SCIENCE. MECHANICS Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32523/bulmathenu.2021/2.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In [1] has been proved some inequalities related to the approximation properties of Ces`aro means of negative order of the one-dimensional Vilenkin-Fourier series. These inequalities allow one to obtain a sufficient condition for the convergence of Ces`aro means of VilenkinFourier series in the L^p− metric in the term of modulus of continuity. In this paper, we will prove the sharpness of these conditions, in particular we find a continuous function under some condition of modulo of continuity, for which Ces`aro means of Vilenkin-Fourier series diverge in the L^p− metric.
Ces 'aro表示一维维伦金-傅里叶级数的负阶
在[1]中证明了与一维维伦金-傅立叶级数负阶Ces 'aro均值近似性质有关的一些不等式。这些不等式允许我们在连续模项的L^p−度规中得到VilenkinFourier级数的Ces 'aro均值收敛的充分条件。在本文中,我们将证明这些条件的尖锐性,特别是我们找到了一个连续函数在某些连续模的条件下,Vilenkin-Fourier级数的Ces 'aro均值在L^p−度规中发散。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信