{"title":"Ces`aro means of negative order of the one-dimensional Vilenkin-Fourier series","authors":"T. Tepnadze","doi":"10.32523/bulmathenu.2021/2.1","DOIUrl":null,"url":null,"abstract":"In [1] has been proved some inequalities related to the approximation properties of Ces`aro means of negative order of the one-dimensional Vilenkin-Fourier series. These inequalities allow one to obtain a sufficient condition for the convergence of Ces`aro means of VilenkinFourier series in the L^p− metric in the term of modulus of continuity. In this paper, we will prove the sharpness of these conditions, in particular we find a continuous function under some condition of modulo of continuity, for which Ces`aro means of Vilenkin-Fourier series diverge in the L^p− metric.","PeriodicalId":225533,"journal":{"name":"BULLETIN of L.N. Gumilyov Eurasian National University. MATHEMATICS. COMPUTER SCIENCE. MECHANICS Series","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BULLETIN of L.N. Gumilyov Eurasian National University. MATHEMATICS. COMPUTER SCIENCE. MECHANICS Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32523/bulmathenu.2021/2.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In [1] has been proved some inequalities related to the approximation properties of Ces`aro means of negative order of the one-dimensional Vilenkin-Fourier series. These inequalities allow one to obtain a sufficient condition for the convergence of Ces`aro means of VilenkinFourier series in the L^p− metric in the term of modulus of continuity. In this paper, we will prove the sharpness of these conditions, in particular we find a continuous function under some condition of modulo of continuity, for which Ces`aro means of Vilenkin-Fourier series diverge in the L^p− metric.