Routing on meshes in optimum time and with really small queues

Bogdan S. Chlebus, J. F. Sibeyn
{"title":"Routing on meshes in optimum time and with really small queues","authors":"Bogdan S. Chlebus, J. F. Sibeyn","doi":"10.1109/IPDPS.2003.1213148","DOIUrl":null,"url":null,"abstract":"We consider permutation routing problems on 2D and 3D mesh-connected computers with side length n. Our main result is a deterministic online algorithm routing on 2D meshes, operating in worst-case time T = 2n + /spl Oscr/(1) and with queue size Q = 3. We also develop offline routing algorithms with performance bounds T = 2n - 1 and Q = 2 for 2D meshes, and T = 3n - 2 and Q = 4 for 3D meshes. We also show that is it possible to route most of the permutations on 2D meshes offline in time T = 2n - 2 with Q = 1.","PeriodicalId":177848,"journal":{"name":"Proceedings International Parallel and Distributed Processing Symposium","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings International Parallel and Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2003.1213148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We consider permutation routing problems on 2D and 3D mesh-connected computers with side length n. Our main result is a deterministic online algorithm routing on 2D meshes, operating in worst-case time T = 2n + /spl Oscr/(1) and with queue size Q = 3. We also develop offline routing algorithms with performance bounds T = 2n - 1 and Q = 2 for 2D meshes, and T = 3n - 2 and Q = 4 for 3D meshes. We also show that is it possible to route most of the permutations on 2D meshes offline in time T = 2n - 2 with Q = 1.
在最优时间和非常小的队列中在网格上路由
我们考虑了边长为n的二维和三维网格连接计算机上的排列路由问题。我们的主要结果是二维网格上的确定性在线路由算法,在最坏情况下运行时间T = 2n + /spl Oscr/(1),队列大小Q = 3。我们还开发了离线路由算法,2D网格的性能界限为T = 2n - 1和Q = 2, 3D网格的性能界限为T = 3n - 2和Q = 4。我们还证明了在Q = 1的情况下,在时间T = 2n - 2上脱机路由2D网格上的大多数排列是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信