D. Santos, André M. P. Mattos, Lucas Matana Luza, C. Cazzaniga, M. Kastriotou, D. Melo, L. Dilillo
{"title":"Neutron Irradiation Testing and Analysis of a Fault-Tolerant RISC-V System-on-Chip","authors":"D. Santos, André M. P. Mattos, Lucas Matana Luza, C. Cazzaniga, M. Kastriotou, D. Melo, L. Dilillo","doi":"10.1109/DFT56152.2022.9962335","DOIUrl":null,"url":null,"abstract":"The radiation in harsh environments affects electronic systems, inducing permanent and temporary errors. These effects lead to unpredictable behaviors detrimental to critical applications and fail-safe systems. This work evaluates the reliability of a fault-tolerant RISC-V System-on-Chip (SoC) under atmospheric neutron irradiation in a particle accelerator. Prior work has analyzed the effectiveness of the hardening techniques of this SoC in simulation and provided a preliminary characterization in an irradiation facility. The applied hardening techniques showed a significant reliability improvement compared to the unhardened implementation of the SoC. The system executed a performance benchmark as workload, which finished correctly in most runs despite suffering from Single Event Effects (SEEs). This work presents a detailed analysis of the experimental results, reporting error rates and classification, extending the analysis given in previous works. Finally, a comprehensive discussion of implementation limitations and the proposition of further improvements are provided.","PeriodicalId":411011,"journal":{"name":"2022 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DFT56152.2022.9962335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The radiation in harsh environments affects electronic systems, inducing permanent and temporary errors. These effects lead to unpredictable behaviors detrimental to critical applications and fail-safe systems. This work evaluates the reliability of a fault-tolerant RISC-V System-on-Chip (SoC) under atmospheric neutron irradiation in a particle accelerator. Prior work has analyzed the effectiveness of the hardening techniques of this SoC in simulation and provided a preliminary characterization in an irradiation facility. The applied hardening techniques showed a significant reliability improvement compared to the unhardened implementation of the SoC. The system executed a performance benchmark as workload, which finished correctly in most runs despite suffering from Single Event Effects (SEEs). This work presents a detailed analysis of the experimental results, reporting error rates and classification, extending the analysis given in previous works. Finally, a comprehensive discussion of implementation limitations and the proposition of further improvements are provided.