Intelligentocular artifacts removal in a noninvasive singlechannel EEG recording

A. Zammouri, Abdelaziz Aitmoussa, SyIvain Chevallier, É. Monacelli
{"title":"Intelligentocular artifacts removal in a noninvasive singlechannel EEG recording","authors":"A. Zammouri, Abdelaziz Aitmoussa, SyIvain Chevallier, É. Monacelli","doi":"10.1109/ISACV.2015.7106164","DOIUrl":null,"url":null,"abstract":"Muscle noises, line noises and eye movements are the main interferences that make difficulties when interpreting and analyzing electroencephalographic signals. Many methods have been proposed for artifacts removing from EEG measurements, and especially those arising from an ocular source. Principal Component Analysis (PCA) and Independent Component Analysis (ICA) have been proposed to remove ocular artifacts from multichannel EEG. In contrast to this, we present a new algorithm for ocular artifacts removal from a single electroencephalographic channel recording. This method is based on a set of information on brain wave frequencies. Our results on EEG data, collected from healthy subjects, show that our algorithm can effectively detect and remove ocular artifacts in EEG recordings.","PeriodicalId":426557,"journal":{"name":"2015 Intelligent Systems and Computer Vision (ISCV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Intelligent Systems and Computer Vision (ISCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISACV.2015.7106164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Muscle noises, line noises and eye movements are the main interferences that make difficulties when interpreting and analyzing electroencephalographic signals. Many methods have been proposed for artifacts removing from EEG measurements, and especially those arising from an ocular source. Principal Component Analysis (PCA) and Independent Component Analysis (ICA) have been proposed to remove ocular artifacts from multichannel EEG. In contrast to this, we present a new algorithm for ocular artifacts removal from a single electroencephalographic channel recording. This method is based on a set of information on brain wave frequencies. Our results on EEG data, collected from healthy subjects, show that our algorithm can effectively detect and remove ocular artifacts in EEG recordings.
无创单通道脑电图记录中智能伪影的去除
在解释和分析脑电图信号时,肌肉噪音、线条噪音和眼球运动是造成困难的主要干扰。已经提出了许多方法来去除EEG测量中的伪影,特别是那些由眼源引起的伪影。提出了主成分分析(PCA)和独立成分分析(ICA)来去除多通道脑电信号中的眼部伪影。与此相反,我们提出了一种新的算法,用于从单个脑电图通道记录中去除眼部伪影。这种方法是基于脑电波频率的一组信息。我们对健康受试者的脑电数据进行了分析,结果表明我们的算法可以有效地检测和去除脑电记录中的眼部伪影。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信