A Comparative Study on Multilevel Thresholding Using Meta-Heuristic Algorithm

Bibekananda Jena, M. K. Naik, Aneesh Wunnava, Rutuparna Panda
{"title":"A Comparative Study on Multilevel Thresholding Using Meta-Heuristic Algorithm","authors":"Bibekananda Jena, M. K. Naik, Aneesh Wunnava, Rutuparna Panda","doi":"10.1109/ICAML48257.2019.00019","DOIUrl":null,"url":null,"abstract":"Current research work is designing the biological visual system which can emulate the human visual system. Image segmentation is one of the important initial steps in this area. There are different approaches to perform segmentation. One of the well-known techniques in image segmentation to separate objects from the background is Image thresholding. Segmentation using multiple thresholds is treated as an optimization problem in most of the cases. This can be done by maximizing or minimizing a given objective function. This paper presents a comparison of seven well known meta-heuristic techniques to obtain optimal threshold for multilevel thresholding problem: wind driven optimization, grey wolf optimization, firefly algorithm, whale optimization, crow optimization algorithm, and grasshopper optimization. Experimental results present the quantitative and qualitative measures of the different algorithms on multi-level thresholding problem with advantages and drawbacks.","PeriodicalId":369667,"journal":{"name":"2019 International Conference on Applied Machine Learning (ICAML)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Applied Machine Learning (ICAML)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAML48257.2019.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Current research work is designing the biological visual system which can emulate the human visual system. Image segmentation is one of the important initial steps in this area. There are different approaches to perform segmentation. One of the well-known techniques in image segmentation to separate objects from the background is Image thresholding. Segmentation using multiple thresholds is treated as an optimization problem in most of the cases. This can be done by maximizing or minimizing a given objective function. This paper presents a comparison of seven well known meta-heuristic techniques to obtain optimal threshold for multilevel thresholding problem: wind driven optimization, grey wolf optimization, firefly algorithm, whale optimization, crow optimization algorithm, and grasshopper optimization. Experimental results present the quantitative and qualitative measures of the different algorithms on multi-level thresholding problem with advantages and drawbacks.
基于元启发式算法的多级阈值比较研究
目前的研究工作是设计能够模拟人类视觉系统的生物视觉系统。图像分割是该领域中重要的初始步骤之一。执行分割有不同的方法。在图像分割中,将目标与背景分离的技术之一是图像阈值分割。在大多数情况下,使用多个阈值的分割被视为一个优化问题。这可以通过最大化或最小化给定的目标函数来实现。本文比较了7种常用的求解多级阈值问题的元启发式算法:风力优化、灰狼优化、萤火虫算法、鲸鱼优化、乌鸦优化算法和蚱蜢优化。实验结果给出了不同算法在多层次阈值问题上的定量和定性度量,并给出了各自的优缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信