Deriving filter parameters using dual-images for image de-noising

Lingyu Wang, Graham Leedham, Siu-Yeung Cho
{"title":"Deriving filter parameters using dual-images for image de-noising","authors":"Lingyu Wang, Graham Leedham, Siu-Yeung Cho","doi":"10.1109/ISPACS.2007.4445861","DOIUrl":null,"url":null,"abstract":"This paper presents a novel technique to derive the filter parameters for removing signal dependent noise (SDN) in the image. In order to remove SDN, many de-noising algorithms rely on a <i>priori</i> knowledge of noise parameters, especially the variance sigma<sub>n</sub> <sup>2</sup>, and the gamma value gamma of the specific imaging technique. This paper proposes a technique to automatically derive the signal variance sigma<sub>f</sub> <sup>2</sup> and use this parameter to construct the Local. <i>Linear</i> <i>Minimum</i> <i>Mean</i> <i>Square</i> <i>Error</i> (LLMMSE) filter without the need to know the values of sigma<sub>n</sub> <sup>2</sup> and gamma. Two image instances of the same noisy scene are used to calculate the signal variance which is then used to construct the LLMMSE filter. Experiments with both the \"Lena\" image and real-life far-infrared (FIR) vein pattern images showed that the proposed technique can predict the signal variance consistently, and the constructed LLMMSE filter performs well in removing the signal dependent noise.","PeriodicalId":220276,"journal":{"name":"2007 International Symposium on Intelligent Signal Processing and Communication Systems","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Symposium on Intelligent Signal Processing and Communication Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS.2007.4445861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a novel technique to derive the filter parameters for removing signal dependent noise (SDN) in the image. In order to remove SDN, many de-noising algorithms rely on a priori knowledge of noise parameters, especially the variance sigman 2, and the gamma value gamma of the specific imaging technique. This paper proposes a technique to automatically derive the signal variance sigmaf 2 and use this parameter to construct the Local. Linear Minimum Mean Square Error (LLMMSE) filter without the need to know the values of sigman 2 and gamma. Two image instances of the same noisy scene are used to calculate the signal variance which is then used to construct the LLMMSE filter. Experiments with both the "Lena" image and real-life far-infrared (FIR) vein pattern images showed that the proposed technique can predict the signal variance consistently, and the constructed LLMMSE filter performs well in removing the signal dependent noise.
使用双图像导出滤波器参数,用于图像去噪
本文提出了一种新的方法来推导图像中信号相关噪声(SDN)的滤波器参数。为了去除SDN,许多去噪算法依赖于对噪声参数的先验知识,特别是方差sigman 2和特定成像技术的伽马值gamma。本文提出了一种自动导出信号方差sigmaf 2的技术,并利用该参数构造局部信号。线性最小均方误差(LLMMSE)滤波器,无需知道sigman 2和gamma的值。使用同一噪声场景的两个图像实例计算信号方差,然后使用该方差构造LLMMSE滤波器。对“Lena”图像和实际远红外(FIR)静脉图案图像的实验表明,该方法可以一致地预测信号方差,并且构建的LLMMSE滤波器在去除信号依赖噪声方面表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信