Simulation Study on Optimizing Neural Network in Short-Term Electric Load Prediction

Tan Zhong-fu, Xin He, Ju Li-wei
{"title":"Simulation Study on Optimizing Neural Network in Short-Term Electric Load Prediction","authors":"Tan Zhong-fu, Xin He, Ju Li-wei","doi":"10.14257/IJMUE.2016.11.3.09","DOIUrl":null,"url":null,"abstract":"It researches the short-term electric load prediction and short-term electric load has the characteristics of time-varying, uncertainty, nonlinearity, etc., so the traditional linear prediction method cannot correctly describe the changing rule of the short-term electric load prediction, and neural network has the deficiencies including local minimum value of neural network, over-fitting and weak generalization ability, and the prediction accuracy is lower. In order to improve the accuracy of the short-term electric load prediction, this paper proposes a short-term electric load prediction model (IQPSOBPNN) based on optimizing BP neural network. Firstly, it improves Quantum Particle Swarm Optimization to optimize the BP neural network parameters, and then adopts the optimized BP neural network to conduct modeling for the nonlinear change law of the short-term electric load prediction. Finally, it takes simulation test for the model performance. The simulation result shows that IPQPSO solves the problems of the BP neural network, and improve the prediction accuracy of the short-term electric load and reduce the prediction error.","PeriodicalId":162936,"journal":{"name":"International Conference on Multimedia and Ubiquitous Engineering","volume":"322 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Multimedia and Ubiquitous Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14257/IJMUE.2016.11.3.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It researches the short-term electric load prediction and short-term electric load has the characteristics of time-varying, uncertainty, nonlinearity, etc., so the traditional linear prediction method cannot correctly describe the changing rule of the short-term electric load prediction, and neural network has the deficiencies including local minimum value of neural network, over-fitting and weak generalization ability, and the prediction accuracy is lower. In order to improve the accuracy of the short-term electric load prediction, this paper proposes a short-term electric load prediction model (IQPSOBPNN) based on optimizing BP neural network. Firstly, it improves Quantum Particle Swarm Optimization to optimize the BP neural network parameters, and then adopts the optimized BP neural network to conduct modeling for the nonlinear change law of the short-term electric load prediction. Finally, it takes simulation test for the model performance. The simulation result shows that IPQPSO solves the problems of the BP neural network, and improve the prediction accuracy of the short-term electric load and reduce the prediction error.
优化神经网络在短期电力负荷预测中的仿真研究
研究短期电力负荷预测,短期电力负荷具有时变、不确定性、非线性等特点,传统的线性预测方法不能正确描述短期电力负荷预测的变化规律,而神经网络又存在神经网络局部最小值、过拟合、泛化能力弱等不足,预测精度较低。为了提高短期电力负荷预测的精度,本文提出了一种基于优化BP神经网络的短期电力负荷预测模型(IQPSOBPNN)。首先,改进量子粒子群算法对BP神经网络参数进行优化,然后采用优化后的BP神经网络对短期负荷预测的非线性变化规律进行建模。最后对模型的性能进行了仿真测试。仿真结果表明,IPQPSO解决了BP神经网络存在的问题,提高了短期电力负荷的预测精度,减小了预测误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信