Efficient Metasurface Absorber for 2.4 GHz ISM-Band Applications

Abdulrahman Ahmed Ghaleb Amer, S. Z. Sapuan, N. Nasimuddin
{"title":"Efficient Metasurface Absorber for 2.4 GHz ISM-Band Applications","authors":"Abdulrahman Ahmed Ghaleb Amer, S. Z. Sapuan, N. Nasimuddin","doi":"10.1109/SCOReD50371.2020.9251029","DOIUrl":null,"url":null,"abstract":"A microwave metasurface (MS) absorber for ISM band applications is proposed and studied. The proposed MS structure consists of two metallic layers separated by two dielectric FR4 materials with a thickness of 1.6 mm. An air gap with a thickness of 10 mm placed between the dielectric layers. The proposed MS absorber exhibits near-unity absorption and wider absorption bandwidth at an operating frequency of 2.4 GHz under normal incidence. For oblique incidence, it shows wider absorption bandwidth and an absorption value of more than 93% for different incident angles for TEM-mode and more than 93% at for TE mode. Moreover, a numerical analysis presented to explain the physical interpretation of the absorption mechanism in detail.","PeriodicalId":142867,"journal":{"name":"2020 IEEE Student Conference on Research and Development (SCOReD)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Student Conference on Research and Development (SCOReD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCOReD50371.2020.9251029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A microwave metasurface (MS) absorber for ISM band applications is proposed and studied. The proposed MS structure consists of two metallic layers separated by two dielectric FR4 materials with a thickness of 1.6 mm. An air gap with a thickness of 10 mm placed between the dielectric layers. The proposed MS absorber exhibits near-unity absorption and wider absorption bandwidth at an operating frequency of 2.4 GHz under normal incidence. For oblique incidence, it shows wider absorption bandwidth and an absorption value of more than 93% for different incident angles for TEM-mode and more than 93% at for TE mode. Moreover, a numerical analysis presented to explain the physical interpretation of the absorption mechanism in detail.
适用于2.4 GHz ism波段应用的高效超表面吸收器
提出并研究了一种适用于ISM波段的微波超表面吸收器。所提出的MS结构由两个金属层组成,由两个厚度为1.6 mm的介电FR4材料隔开。介电层之间厚度为10毫米的气隙。在2.4 GHz的工作频率下,所提出的质谱吸收器具有近均匀吸收和更宽的吸收带宽。斜入射时,tem模式的吸收带宽更宽,不同入射角下的吸收值均大于93%,TE模式的吸收值均大于93%。此外,数值分析详细解释了吸收机理的物理解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信