Some Types of Filters in Hoops

M. Kondo
{"title":"Some Types of Filters in Hoops","authors":"M. Kondo","doi":"10.1109/ISMVL.2011.9","DOIUrl":null,"url":null,"abstract":"In this paper we consider fundamental properties of some types of filters (implicative, positive implicative and fantastic filters) of hoops and prove that for any hoop $A$ and filter $F$ of $A$,\\begin{quote}(a) $F$ is an implicative filter if and only if $A/F$ is a relatively pseudo-complemented semi lattice, that is, Brouwerian semi lattice,(b) $F$ is a positive implicative filter if and only if $A/F$ is a $\\{\\wedge, \\vee, \\to, 1\\}$-reduct of Heyting algebra,(c) $F$ is a fantastic filter if and only if $A/F$ is a Wajsberg hoop.\\end{quote} Moreover we show that, for any filter of a hoop, it is a positive implicative filter if and only if it is an implicative and fantastic filter.","PeriodicalId":234611,"journal":{"name":"2011 41st IEEE International Symposium on Multiple-Valued Logic","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 41st IEEE International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2011.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

In this paper we consider fundamental properties of some types of filters (implicative, positive implicative and fantastic filters) of hoops and prove that for any hoop $A$ and filter $F$ of $A$,\begin{quote}(a) $F$ is an implicative filter if and only if $A/F$ is a relatively pseudo-complemented semi lattice, that is, Brouwerian semi lattice,(b) $F$ is a positive implicative filter if and only if $A/F$ is a $\{\wedge, \vee, \to, 1\}$-reduct of Heyting algebra,(c) $F$ is a fantastic filter if and only if $A/F$ is a Wajsberg hoop.\end{quote} Moreover we show that, for any filter of a hoop, it is a positive implicative filter if and only if it is an implicative and fantastic filter.
一些类型的过滤器在箍
本文研究了几种类型的圆环滤波器(隐含滤波器、正隐含滤波器和奇异滤波器)的基本性质,并证明了对于任意圆环$A$和$A$滤波器$F$,\begin{quote}(a) $F$是隐含滤波器当且仅当$A/F$是相对伪补半格即Brouwerian半格,(b) $F$是正隐含滤波器当且仅当$A/F$是Heyting代数的$\{\wedge, \vee, \to, 1\}$ -约简,(c) $F$是奇异滤波器当且仅当$A/F$是Wajsberg环。\end{quote} 此外,我们还证明,对于圆环的任何滤波器,当且仅当它是一个隐含的奇异滤波器时,它是一个正隐含滤波器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信